簡易檢索 / 詳目顯示

研究生: 李侑道
Lee, Yu-Tao
論文名稱: 增進紀錄能力之微電極陣列的設計與實現
Multielectrode arrays (MEA) with improved recording properties: The design aspects and implementation
指導教授: 方維倫
Fang, Weileun
張兗君
Chang, Yen-Chung
口試委員: 方維倫
張兗君
林敏雄
陳國聲
鄭裕庭
黃榮堂
葉世榮
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 163
中文關鍵詞: 微電極陣列神經探針生物相容性三維微電極陣列雙面神經探針polyimide翅狀電極玻璃回融技術BCB暫時接合技術
外文關鍵詞: multielectrode array, microprobe, biocompatibility, 3D multielectrode array, dual-sided microprobe, polyimide wing electrode, glass reflow process, BCB temporally bonding process
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微電極陣列 (multielectrode array,MEA) 自 1970 年代開始發展並應用於神經科技上。微電極陣列的與傳統電極陣列相比的最大優勢為可在單位面積內提
    供高密度的紀錄能力,提供神經網絡中眾多神經細胞產生的訊號。雖然微電極陣列具有上述優勢,但在紀錄範圍、紀錄的效率以及微電極陣列的生物相容性上,仍有許多待提升的空間。本論文針對微電極陣列在紀錄上的特性進行探討,並透由玻璃回融及 benzocyclobutene (BCB) 暫時接合技術製作四種不同形式的微電極陣列。以玻璃為基材的微電極陣列透由將低阻值矽結構內嵌在基座,搭配本論文提出的組裝流程製作出三維的微電極陣列,將二維微電極陣列的紀錄範圍提升為三維的紀錄範圍。一般平面式微電極陣列受限於探針,電極僅能紀錄與電極同側的神經細胞,而無法紀錄探針另一側的神經細胞。針對此議題,本論文透由玻璃回融製程製作具嵌入矽電極的玻璃微電極陣列,另也透由 BCB暫時接合技術實現矽基材雙面微電極陣列。上述兩種微電極陣列則具有量測探針周圍神經細胞,而非只限於量測探針一側的能力。最後本論文透由 BCB 暫時接合技術實現一整合超薄 polyimide 翅狀電極與矽結構探針的微電極陣列。在植入腦組織時,超薄 polyimide 翅狀電極在矽結構探針的輔助下可順利的進行植入。由矽探針側邊外突 polyimide 翅狀結構降低在植入過程中對於腦組織的傷害,同時也使紀錄電極能遠離矽探針在組織中傷害的區域,增進微電極陣列的生物相容性。透過於生物體內實際量測神經訊號,本論文驗證了所製作微電極陣列的量測能力,並且也展示微電極陣列上不同電極的量測特性以及微電極陣列的生物相容性。


    The most important advantage of multielectrode array (MEA) is the high recording density, providing rich neural information inside the brain. However, the recording range, efficiency of MEA, and the biocompatibility issues of MEA
    still request more effort to make further improvement. Based on two fabrication platforms, the glass reflowing process and benzocyclobutene (BCB) temporally bonding process, this thesis design and implement four different types of MEA.
    Glass based MEAs integrated with embedded low-resistance silicon are fabricated, and an assembly process are proposed to implement a 3D glass MEA to extend the recording range. Traditional planar type MEA has restricted recording range at one side of shaft. To address this issue, a glass MEA integrate with embedded silicon electrode and a Si MEA with electrodes on two sides of shaft are fabricated to record neurons around the shaft. In the final part of this thesis, a MEA integrates ultra-thin polyimide wing electrode and thick silicon probe shaft is implemented through the BCB temporally bonding process. The polyimide wing electrodes
    protruding from the shaft move the electrodes away from the severe trauma area induced by the silicon shaft, and the ultra-thin polyimide wing are also expected to induce less trauma during insertion. Thus, the biocompatibility of this MEA is improved. The in-vivo neural signal recording result from different types of MEA fabricated in this thesis successfully demonstrate the recording ability, and also demonstrate the recording properties and biocompatibility of specific types of MEA.

    目錄 中文摘要 i Abstract ii 致謝 iii 1 緒論 1 1.1 神經科技 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 論文目標與架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 論文目標 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 神經系統與訊號量測概述 8 2.1 神經細胞 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 神經細胞構造 . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 動作電位 (action potential) 的產生 . . . . . . . . . . . . . 10 2.2 電極與溶液介面 (electrode-electrolyte interface) . . . . . . . . . . 11 2.3 神經訊號量測技術概述 . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 胞內紀錄 (intracellular recording) . . . . . . . . . . . . . . 12 2.3.2 膜片箝制技術 (patch clamping recording) . . . . . . . . . 12 2.3.3 胞外量測技術 . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 植入腦組織的電極與量測模型 . . . . . . . . . . . . . . . . . . . . 14 2.4.1 植入腦組織中的傳統電極 . . . . . . . . . . . . . . . . . . 14 2.4.2 量測模型與設備 . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.3 量測雜訊來源 . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 以微機電製程 (MEMS) 技術製作的神經探針 23 3.1 二維微電極陣列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 以矽 (silicon) 為基材之微電極陣列 . . . . . . . . . . . . . 24 3.1.2 以高分子為基材之微電極陣列 . . . . . . . . . . . . . . . . 26 3.1.3 其它基材之微電極陣列 . . . . . . . . . . . . . . . . . . . 26 3.2 微電極陣列的量測與刺激特性 . . . . . . . . . . . . . . . . . . . . 27 3.2.1 微電極陣列的量測範圍與三維組裝 . . . . . . . . . . . . . 27 3.2.2 電極的量測與刺激範圍 . . . . . . . . . . . . . . . . . . . 30 3.3 微電極陣列的生物相容性 . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 鞘狀結構與神經細胞的凋亡 . . . . . . . . . . . . . . . . . 31 3.3.2 以主動 (active) 方式提升生物相容性 . . . . . . . . . . . . 32 3.3.3 以被動 (passive) 方式提升生物相容性 . . . . . . . . . . . 32 4 三維玻璃微電極陣列 46 4.1 三維玻璃微電極陣列設計概念 . . . . . . . . . . . . . . . . . . . . 46 4.2 製作流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.1 二維玻璃微電極陣列製程 . . . . . . . . . . . . . . . . . . 48 4.2.2 組裝輔具與承載晶片的製作流程 . . . . . . . . . . . . . . 51 4.3 三維微電極陣列組裝流程 . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 第一階段組裝 . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 第二階段組裝 . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 製作結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.1 元件製作結果 . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.2 組裝結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4.3 組裝良率量測 . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.4 討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.5 元件量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.5.1 阻抗量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5.2 生物訊號量測 . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.6 本章結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 雙面二維玻璃微電極陣列 69 5.1 設計概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 具有矽電極的微電極陣列製作流程 . . . . . . . . . . . . . . . . . 70 5.2.1 定義矽結構母模 . . . . . . . . . . . . . . . . . . . . . . . 71 5.2.2 玻璃回融與研磨 . . . . . . . . . . . . . . . . . . . . . . . 71 5.2.3 金屬及絕緣層定義 . . . . . . . . . . . . . . . . . . . . . . 71 5.2.4 元件釋放 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3 製作結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.4 量測結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.4.1 阻抗量測結果 . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.4.2 以體外量測方式探討電極量測範圍 . . . . . . . . . . . . . 74 5.4.3 以美國螯蝦的神經索 (nerve cord) 探討電極量測範圍 . . . 77 5.4.4 鼠腦訊號量測 . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5 量測結果討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.6 本章結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 矽基材雙面微電極陣列 95 6.1 BCB 暫時接合製程設計 . . . . . . . . . . . . . . . . . . . . . . . 95 6.1.1 暫時接合技術的考量 . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 BCB 接合特性 . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1.3 Al 於 2M NaCl 中電化學蝕刻技術 . . . . . . . . . . . . . 97 6.1.4 BCB 暫時接合技術 . . . . . . . . . . . . . . . . . . . . . . 98 6.2 製作流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.1 正面製程 . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.2 BCB 暫時接合製程 . . . . . . . . . . . . . . . . . . . . . . 100 6.2.3 背面製程 . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3 製作結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.1 BCB 接合結果 . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.2 元件製作結果 . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.3 封裝結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4 量測結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4.1 電極阻抗量測結果 . . . . . . . . . . . . . . . . . . . . . . 103 6.4.2 鼠腦訊號量測結果 . . . . . . . . . . . . . . . . . . . . . . 104 6.5 本章結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7 具翅狀 polyimide 薄膜電極的矽基材微電極陣列 114 7.1 設計概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.1.1 元件設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.1.2 材料選擇 . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.2 製作流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2.1 金屬膜層與 polyimide 膜層堆疊 . . . . . . . . . . . . . . . 117 7.2.2 BCB 暫時接合技術 . . . . . . . . . . . . . . . . . . . . . . 118 7.2.3 元件釋放 . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3 製作結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3.1 元件製作結果 . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.3.2 Polyimide 翅狀結構翹曲量 . . . . . . . . . . . . . . . . . 121 7.3.3 封裝結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4 量測結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.4.1 穿刺能力測試 . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.4.2 阻抗量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.4.3 鼠腦訊號量測 . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.5 本章結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8 結論與未來工作 138 8.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2 未來工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.2.1 高密度三維組裝 . . . . . . . . . . . . . . . . . . . . . . . 140 8.2.2 二維微電極陣列與三維組裝流程的整合 . . . . . . . . . . 141 8.2.3 電極改質 . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 A BCB 暫時接合技術 144 A.1 BCB 暫時接合技術開發測試 . . . . . . . . . . . . . . . . . . . . 144 A.1.1 BCB 晶圓接合製程 . . . . . . . . . . . . . . . . . . . . . . 144 A.1.2 晶圓背面製程及電化學蝕刻釋放 . . . . . . . . . . . . . . 145 A.1.3 BCB 接合強度測試 . . . . . . . . . . . . . . . . . . . . . . 145 A.2 測試結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.2.1 BCB 接合與研磨結果 . . . . . . . . . . . . . . . . . . . . 146 A.2.2 溫度對接合強度的影響 . . . . . . . . . . . . . . . . . . . 146 A.2.3 研磨後後製程與釋放結果 . . . . . . . . . . . . . . . . . . 147 A.3 本章討論與結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 圖目錄 1.1 本論文研究目標與架構 . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 神經細胞構造圖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 神經細胞動作電位的產生與鈉離子、鉀離子通道的關係 . . . . . 19 2.3 電極與溶液中的離子形成的亥姆霍茲平面 . . . . . . . . . . . . . 20 2.4 電極與溶液介面的阻抗模型 . . . . . . . . . . . . . . . . . . . . . 20 2.5 不同的神經訊號量測技術 . . . . . . . . . . . . . . . . . . . . . . 21 2.6 胞外量測訊號種類、位置以及對神經義肢解析度的影響 . . . . . 21 2.7 傳統金屬探針陣列 . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.8 胞外量測神經訊號模型 . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 由晶圓上透過微機電製程製作的平面式微電極陣列 . . . . . . . . 34 3.2 密西根探針的製作流程製程與完成品 . . . . . . . . . . . . . . . . 34 3.3 以絕緣層覆矽晶圓所製作的微電極陣列 . . . . . . . . . . . . . . . 35 3.4 以晶圓背面研磨所製作的微電極陣列 . . . . . . . . . . . . . . . . 35 3.5 猶他電極 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 以高分子為基材的微電極陣列 . . . . . . . . . . . . . . . . . . . . 36 3.7 微電極陣列的量測範圍 . . . . . . . . . . . . . . . . . . . . . . . . 37 3.8 以自組裝方式製作的三維微電極陣列 . . . . . . . . . . . . . . . . 38 3.9 手工組裝三維微電極陣列示意圖 . . . . . . . . . . . . . . . . . . 38 3.10 Yao 等研究者所開發的密西根三維微電極陣列 . . . . . . . . . . . 39 3.11 Perlin 等研究者所開發的密西根三維微電極陣列 . . . . . . . . . . 39 3.12 Neuroprobes 團隊所開發的三微陣列構裝方法 . . . . . . . . . . . 40 3.13 其他三維微電極陣列構裝方式 . . . . . . . . . . . . . . . . . . . . 40 3.14 電極紀錄範圍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.15 平面式微電極陣列探針對於紀錄訊號的影響 . . . . . . . . . . . . 41 3.16 在鼠腦內紀錄的訊號顯示平面式微電極陣列的探針對於紀錄訊號 的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.17 以 Si 作為基材,且在探針兩側有電極的微電極陣列 . . . . . . . 42 3.18 以高分子作為基材,且在探針兩側有電極的微電極陣列 . . . . . 43 3.19 探針在植入後的生物發炎反應與鞘狀結構 . . . . . . . . . . . . . 43 3.20 植入探針造成在探針周圍神經細胞數目的下降 . . . . . . . . . . . 44 3.21 微電極陣列的尺寸以及是否固定於頭骨上對生物相容性的影響 . . 45 4.1 三維玻璃微電極陣列組裝概念圖 . . . . . . . . . . . . . . . . . . 59 4.2 提高組裝良率的設計概念圖 . . . . . . . . . . . . . . . . . . . . . 60 4.3 二維玻璃微電極陣列製程圖 . . . . . . . . . . . . . . . . . . . . . 61 4.4 組裝輔具製作流程 . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5 承載晶片製作流程 . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.6 第一階段組裝流程示意圖 . . . . . . . . . . . . . . . . . . . . . . 63 4.7 第一階段組裝流程的設備示意圖 . . . . . . . . . . . . . . . . . . 63 4.8 第二階段組裝流程示意圖 . . . . . . . . . . . . . . . . . . . . . . 64 4.9 二維玻璃微電極陣列的製作結果 . . . . . . . . . . . . . . . . . . 64 4.10 組裝輔具與承載晶片的製作結果 . . . . . . . . . . . . . . . . . . 65 4.11 第一階段組裝結果 . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.12 第二階段組裝結果 . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.13 第二階段組裝的電性量測測果 . . . . . . . . . . . . . . . . . . . . 66 4.14 三維玻璃微電極陣列阻抗量測 . . . . . . . . . . . . . . . . . . . . 67 4.15 三維玻璃微電極陣列神經訊號量測 . . . . . . . . . . . . . . . . . 68 5.1 不同種類電極的紀錄特性 . . . . . . . . . . . . . . . . . . . . . . 83 5.2 雙面二維玻璃微電極陣列的設計概念圖 . . . . . . . . . . . . . . . 83 5.3 具有矽電極的玻璃微電極陣列的製程圖 . . . . . . . . . . . . . . . 84 5.4 矽結構在蝕刻後的斷裂情形 . . . . . . . . . . . . . . . . . . . . . 84 5.5 雙面二維玻璃微電極陣列製作結果 . . . . . . . . . . . . . . . . . 85 5.6 具有正面電極 (T)、背面電極 (B)、雙面電極 (D、Dasy 的玻璃微 電極陣列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.7 具有側面電極 (S) 的玻璃微電極陣列 . . . . . . . . . . . . . . . . 86 5.8 封裝結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.9 正面、背面、雙面及側面電極的阻抗與相位量測結果 . . . . . . . 87 5.10 體外量測電極特性的系統架設圖 . . . . . . . . . . . . . . . . . . 87 5.11 體外量測電極特性的實驗結果 . . . . . . . . . . . . . . . . . . . . 88 5.12 電極材料對 Rij 量測結果的影響 . . . . . . . . . . . . . . . . . . 89 5.13 美國螯蝦神經索神經訊號量測系統架設圖 . . . . . . . . . . . . . 90 5.14 美國螯蝦神經索神經訊號量測結果 . . . . . . . . . . . . . . . . . 91 5.15 大鼠腦部神經訊號量測設備升級 . . . . . . . . . . . . . . . . . . 92 5.16 大鼠腦部神經訊號量測結果 . . . . . . . . . . . . . . . . . . . . . 93 5.17 以側面電極 (S) 量測大鼠腦部的神經訊號 . . . . . . . . . . . . . 94 6.1 矽基材雙面微電極陣列的設計概念 . . . . . . . . . . . . . . . . . 106 6.2 暫時接合製程所需考量的製程參數 . . . . . . . . . . . . . . . . . 106 6.3 矽基材雙面微電極陣列的製作過程 . . . . . . . . . . . . . . . . . 107 6.4 矽晶圓與玻璃晶圓完成 BCB 接合的結果 . . . . . . . . . . . . . . 108 6.5 濺鍍 TiW/Al/TiW 於 Pt 電極上,使得 TiW 作為隔絕層防止 Al 與 Pt 在高溫下作用 . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.6 矽基材雙面微電極陣列完成背面製程與元件釋放結果 . . . . . . . 109 6.7 矽基材雙面微電極陣列的探針製作結果 . . . . . . . . . . . . . . . 109 6.8 矽基材雙面微電極陣列的正面與背面電極、焊墊製作結果 . . . . 110 6.9 矽基材雙面微電極陣列的封裝示意圖與結果 . . . . . . . . . . . . 111 6.10 矽基材雙面微電極陣列的阻抗與相位量測結果 . . . . . . . . . . . 112 6.11 矽基材雙面微電極陣列鼠腦訊號量測結果 . . . . . . . . . . . . . 113 6.12 矽基材雙面微電極的正面電極在多次植入鼠腦後仍未產生脫落的 情形 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.1 出平面式與平面式微電極陣列在電極配置的不同造成對生物相容 性的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2 具翅狀 polyimide 薄膜電極的矽基材微電極陣列的設計概念 . . . 127 7.3 具翅狀 polyimide 薄膜電極的矽基材微電極陣列的製作流程 . . . 128 7.4 有無圓滑邊緣對於鍍上金屬膜厚度的影響 . . . . . . . . . . . . . 128 7.5 具翅狀 polyimide 薄膜電極的矽基材探針製作完成的照片之一 . . 129 7.6 具翅狀 polyimide 薄膜電極的矽基材探針製作完成的照片之二 . . 130 7.7 鐘形 polyimide 翅狀結構翹曲值 . . . . . . . . . . . . . . . . . . . 131 7.8 具翅狀 polyimide 薄膜電極的矽基材探針封裝完成圖 . . . . . . . 131 7.9 具翅狀 polyimide 穿刺假腦的情況 . . . . . . . . . . . . . . . . . 132 7.10 具翅狀 polyimide 穿刺鼠腦後拔出的情況 . . . . . . . . . . . . . 133 7.11 翅狀 polyimide 薄膜電極阻抗與相位量測結果 . . . . . . . . . . . 134 7.12 翅狀 polyimide 薄膜電極在植入小鼠腦中 22 天後的量測結果 . . 135 7.13 翅狀 polyimide 薄膜電極在植入小鼠腦中 57 天後的量測結果 . . 136 7.14 翅狀 polyimide 薄膜電極由小鼠腦上脫落的結果 . . . . . . . . . . 137 A.1 BCB 暫時接合技術測試製程 . . . . . . . . . . . . . . . . . . . . 150 A.2 BCB 接合的詳細參數圖 . . . . . . . . . . . . . . . . . . . . . . . 150 A.3 Al 電化學蝕刻示意圖 . . . . . . . . . . . . . . . . . . . . . . . . 151 A.4 接合強度測試片 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 A.5 BCB 接合與研磨結果 . . . . . . . . . . . . . . . . . . . . . . . . 152 A.6 溫度對於 BCB 接合強度的影響 . . . . . . . . . . . . . . . . . . . 152 A.7 測試 Al 電化學蝕刻速度的結果 . . . . . . . . . . . . . . . . . . . 153 表目錄 2.1 一般哺乳類細胞內外離子濃度及其平衡電位 . . . . . . . . . . . . 18 8.1 本論文所製作元件比較表 . . . . . . . . . . . . . . . . . . . . . . 143 A.1 溫度對於晶圓彎曲度的影響 . . . . . . . . . . . . . . . . . . . . . 149

    [1] W.L.C. Rutten. Neurotechnology. John Wiley & Sons, Inc., 2001.
    [2] F.M. Weaver, K. Follett, M. Stern, K. Hur, C. Harris, W.J. Marks Jr, J. Rothlind, O. Sagher, D. Reda, C.S. Moy, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease. JAMA: the journal of the American Medical Association, 301(1): 63–73, 2009.
    [3] A. Handforth, C.M. DeGiorgio, S.C. Schachter, B.M. Uthman, D.K. Naritoku, E.S. Tecoma, T.R. Henry, S.D. Collins, B.V. Vaughn, R.C. Gilmartin, et al. Vagus nerve stimulation therapy for partial-onset seizures. Neurology,
    51(1):48–55, 1998.
    [4] Marius A. Kemler, Gerard A.M. Barendse, Maarten van Kleef, Henrica C.W. de Vet, Coen P.M. Rijks, Carina A. Furnee, and Frans A.J.M. van den Wildenberg. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. New England Journal of Medicine, 343(9):618–624, 2000.
    [5] J.N. Ratchford, W. Shore, E.R. Hammond, J.G. Rose, R. Rifkin, P. Nie, K. Tan, M.E. Quigg, B.J. de Lateur, and D.A. Kerr. A pilot study of functional electrical stimulation cycling in progressive multiple sclerosis. NeuroRehabilitation, 27(2):121–128, 2010.
    [6] K. Hayward, R. Barker, and S. Brauer. Advances in neuromuscular electrical stimulation for the upper limb post-stroke. Physical Therapy Reviews, 15(4): 309–319, 2010.
    [7] M.S. Humayun, J.D. Dorn, L. da Cruz, G. Dagnelie, J.A. Sahel, P.E. Stanga, A.V. Cideciyan, J.L. Duncan, D. Eliott, E. Filley, et al. Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology,
    2012.
    [8] G. Fayad and B. Elmiyeh. Cochlear implant. In Nadey S. Hakim, editor, Artificial Organs, volume 4 of New Techniques in Surgery Series, pages 133–136. Springer London, 2009.
    [9] L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099):164–171, July 2006.
    [10] J.D. Simeral, S.P. Kim, M.J. Black, J.P. Donoghue, and L.R. Hochberg. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. Journal of Neural Engineering, 8:025027, 2011.
    [11] M. Velliste, S. Perel, M.C. Spalding, A.S. Whitford, and A.B. Schwartz. Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198):1098–1101, 2008.
    [12] L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. van der Smagt, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature,
    485(7398):372–375, 2012.
    [13] A.A. Fomani, R.R. Mansour, C.M. Florez-Quenguan, and P.L. Carlen. Development and characterization of multisite three-dimensional microprobes for deep brain stimulation and recording. Microelectromechanical Systems, Journal of, 20(5):1109 –1118, oct. 2011.
    [14] P.S. Motta and J.W. Judy. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-d electroplating process. Biomedical Engineering, IEEE Transactions on, 52(5):923–933, 2005.
    [15] H.C.F. Martens, E. Toader, M.M.J. Decré, D.J. Anderson, R. Vetter, D.R. Kipke, K.B. Baker, M.D. Johnson, and J.L. Vitek. Spatial steering of deep brain stimulation volumes using a novel lead design. Clinical Neurophysiology, 122(3):558–566, 2011.
    [16] J. Csicsvari, D.A. Henze, B. Jamieson, K.D. Harris, A. Sirota, P. Barthó, K.D. Wise, and G. Buzsáki. Massively parallel recording of unit and local field potentials with silicon-based electrodes. Journal of neurophysiology,
    90(2):1314–1323, 2003.
    [17] G.G. Matthews. Neurobiology: molecules, cel ls, and systems. Wiley Blackwell, 2001.
    [18] T.H. Bullock and G.A. Horridge. Structure and function in the nervous systems of invertebrates. San Francisco, 1965.
    [19] S.F. Cogan. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng., 10:275–309, 2008.
    [20] R. Sherman-Gold. The axon guide for electrophysiology & biophysics: laboratory techniques. Axon Instruments, 1993.
    [21] B. Sakmann and E. Neher. Single-channel recording. Springer, 2009.
    [22] S. Musallam, M.J. Bak, P.R. Troyk, and R.A. Andersen. A floating metal microelectrode array for chronic implantation. Journal of Neuroscience Methods, 160(1):122 – 127, 2007.
    [23] D. McCreery, A. Lossinsky, V. Pikov, and X. Liu. Microelectrode array for chronic deep-brain microstimulation and recording. Biomedical Engineering, IEEE Transactions on, 53(4):726 –737, april 2006.
    [24] J.D. Kralik, D.F. Dimitrov, D.J. Krupa, D.B. Katz, D. Cohen, and M.A.L. Nicolelis. Techniques for chronic, multisite neuronal ensemble recordings in behaving animals. Methods, 25(2):121 – 150, 2001.
    [25] C. Bedard, H. Kroger, and A. Destexhe. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical journal, 86(3):1829–1842, 2004.
    [26] M.A. Moffitt and C.C. McIntyre. Model-based analysis of cortical recording with silicon microelectrodes. Clinical Neurophysiology, 116(9):2240 – 2250, 2005.
    [27] M.P.Ward, P. Rajdev, C. Ellison, and P.P. Irazoqui. Toward a comparison of microelectrodes for acute and chronic recordings. Brain research, 1282:183–200, 2009.
    [28] T. Sakurai and K. Tamaru. Simple formulas for two-and three-dimensional capacitances. Electron Devices, IEEE Transactions on, 30(2):183–185, 1983.
    [29] J. Du, I.H. Riedel-Kruse, J.C. Nawroth, M.L. Roukes, G. Laurent, and S.C. Masmanidis. High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays. Journal of Neuro-
    physiology, 101(3):1671–1678, 2009.
    [30] K. Najafi, J. Ji, and K.D. Wise. Scaling limitations of silicon multichannel recording probes. Biomedical Engineering, IEEE Transactions on, 37(1):1 –11, jan. 1990.
    [31] S. Kisban. Silicon-Based Neural Devices: Packaging and Application. PhD thesis, IMTEK, University of Freiburg, 2010.
    [32] http://www.trianglebiosystems.com.
    [33] http://www.plexon.com.
    [34] J. Webster. Medical instrumentation: application and design. Wiley-India, 2009.
    [35] S.F. Lempka, M.D. Johnson, M.A. Moffitt, K.J. Otto, D.R. Kipke, and C.C. McIntyre. Theoretical analysis of intracortical microelectrode recordings. Journal of Neural Engineering, 8(4):045006, 2011.
    [36] Inc Encyclopedia Britannica.
    [37] J. Gregory, X. Jia, and R. Williams. Particle deposition and aggregation: measurement, model ling and simulation. Butterworth-Heinemann, 1998.
    [38] S. Waldert, T. Pistohl, C. Braun, T. Ball, A. Aertsen, and C. Mehring. A review on directional information in neural signals for brain-machine interfaces. Journal of Physiology-Paris, 103(3-5):244–254, 2009.
    [39] J. Dolbow and M. Gosz. Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mechanics of materials, 23(4):311–321, 1996.
    [40] T.J. Hall, M. Bilgen, M.F. Insana, and T.A. Krouskop. Phantom materials for elastography. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 44(6):1355 –1365, nov 1997.
    [41] K.D. Wise, J.B. Angell, and A. Starr. An integrated-circuit approach to extracellular microelectrodes. Biomedical Engineering, IEEE Transactions on, BME-17(3):238 –247, july 1970.
    [42] K.D. Wise and J. Angell. A microprobe with integrated amplifiers for neurophysiology. In Solid-State Circuits Conference. Digest of Technical Papers. 1971 IEEE International, volume 14, pages 100–101. IEEE, 1971.
    [43] K. Najafi, K.D. Wise, and T. Mochizuki. A high-yield ic-compatible multichannel recording array. Electron Devices, IEEE Transactions on, 32(7): 1206 – 1211, jul 1985.
    [44] Neuronexus. 2011 catalog. 2011.
    [45] D.T. Kewley, M.D. Hills, D.A. Borkholder, I.E. Opris, N.I. Maluf, C.W. Storment, J.M. Bower, and G.T.A. Kovacs. Plasma-etched neural probes. Sensors and Actuators A: Physical, 58(1):27 – 35, 1997. Micromechanics Sections of Sensors and Actuators.
    [46] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U.G. Hofmann. A 32-site neural recording probe fabricated by drie of soi substrates. Journal of Micromechanics and Microengineering, 12(4):414, 2002.
    [47] S. Herwik, O. Paul, and P. Ruther. Ultrathin silicon chips of arbitrary shape by etching before grinding. Microelectromechanical Systems, Journal of, 20(4):791 –793, aug. 2011.
    [48] P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, and R.A. Normann. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. Biomedical Engineering, IEEE Transactions on, 38(8):758 –768, aug. 1991.
    [49] K.E. Jones, P.K. Campbell, and R.A. Normann. A glass/silicon composite intracortical electrode array. Annals of biomedical engineering, 20(4):423–437, 1992.
    [50] P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher. Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge
    machining for neural applications. In Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, pages 1206 –1209, june 2009.
    [51] R. Bhandari, S. Negi, L. Rieth, R.A. Normann, and F. Solzbacher. A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sensors and Actuators A: Physical, 145-146:123 – 130, 2008.
    [52] D.S. Pellinen, T. Moon, R.J. Vetter, R. Miriani, and D.R. Kipke. Multifunctional flexible parylene-based intracortical microelectrodes. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual
    International Conference of the, pages 5272–5275. IEEE, 2005.
    [53] D. Ziegler, T. Suzuki, and S. Takeuchi. Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene. Microelectromechanical Systems, Journal of, 15(6):1477 –1482, dec. 2006.
    [54] K.C. Cheung, P. Renaud, H. Tanila, and K. Djupsund. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors and Bioelectronics, 22(8):1783–1790, 2007.
    [55] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita. 3d flexible multichannel neural probe array. Journal of Micromechanics and Microengineering, 14(1): 104, 2004.
    [56] Y.Y. Chen, H.Y. Lai, S.H. Lin, C.W. Cho, W.H. Chao, C.H. Liao, S. Tsang, Y.F. Chen, and S.Y. Lin. Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic
    lesion in rat brain. Journal of neuroscience methods, 182(1):6–16, 2009.
    [57] K. Lee, J. He, R. Clement, S. Massia, and B. Kim. Biocompatible benzocyclobutene (bcb)-based neural implants with micro-fluidic channel. Biosensors and Bioelectronics, 20(2):404 – 407, 2004. Special Issue in Honour of
    Professor Pierre Coulet.
    [58] M. Tijero, G. Gabriel, J. Caro, A. Altuna, R. Hernandez, R. Villa, J. Berganzo, F.J. Blanco, R. Salido, and L.J. Fernandez. Su-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
    Biosensors and Bioelectronics, 24(8):2410 – 2416, 2009.
    [59] C.H. Chen, S.C. Chuang, H.C. Su, W.L. Hsu, T.R. Yew, Y.C. Chang, S.R. Yeh, and D.J. Yao. A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. Lab Chip, 11(9):1647–
    1655, 2011.
    [60] J. Subbaroyan, D.C. Martin, and D.R. Kipke. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. Journal of Neural Engineering, 2(4):103–113, 2005.
    [61] A.A. Fomani and R.R. Mansour. Fabrication and characterization of the flexible neural microprobes with improved structural design. Sensors and Actuators A: Physical, 168(2):233 – 241, 2011.
    [62] D. Egert, R.L. Peterson, and K. Najafi. Parylene microprobes with engineered stiffness and shape for improved insertion. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pages 198 –201, june 2011.
    [63] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip, 5(5): 519–523, 2005.
    [64] A. Hess, J. Dunning, J. Harris, J.R. Capadona, K. Shanmuganathan, S.J. Rowan, C. Weder, D.J. Tyler, and C.A. Zorman. A bio-inspired, chemoresponsive polymer nanocomposite for mechanically dynamic microsystems.
    pages 224–227, 2009.
    [65] T.A. Fofonoff, S.M. Martel, N.G. Hatsopoulos, J.P. Donoghue, and I.W. Hunter. Microelectrode array fabrication by electrical discharge machining and chemical etching. Biomedical Engineering, IEEE Transactions on, 51(6): 890 –895, june 2004.
    [66] P. McCarthy, K. Otto, and M. Rao. Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomedical Microdevices, 13:503–515, 2011. 10.1007/s10544-011-9519-5.
    [67] K.A. Moxon, S.C. Leiser, G.A. Gerhardt, K.A. Barbee, and J.K. Chapin. Ceramic-based multisite electrode arrays for chronic single-neuron recording. Biomedical Engineering, IEEE Transactions on, 51(4):647–656, 2004.
    [68] C.W. Lin, Y.T. Lee, C.W. Chang, W.L. Hsu, Y.C. Chang, and W. Fang. Novel glass microprobe arrays for neural recording. Biosensors and Bioelectronics, 25(2):475 – 481, 2009.
    [69] M.F. Wang, T. Maleki, and B. Ziaie. A self-assembled 3d microelectrode array. Journal of Micromechanics and Microengineering, 20(3):035013, 2010.
    [70] Q. Bai, K.D.Wise, and D.J. Anderson. A high-yield microassembly structure for three-dimensional microelectrode arrays. Biomedical Engineering, IEEE Transactions on, 47(3):281 –289, march 2000.
    [71] Y. Yao, M.N. Gulari, J.A. Wiler, and K.D. Wise. A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications. Microelectromechanical Systems, Journal of, 16(4):977 –988, aug. 2007.
    [72] G.E. Perlin and K.D. Wise. An ultra compact integrated front end for wireless neural recording microsystems. Microelectromechanical Systems, Journal of, 19(6):1409 –1421, dec. 2010.
    [73] S.M.E. Merriam, O. Srivannavit, M.N. Gulari, and K.D. Wise. A three dimensional 64-site folded electrode array using planar fabrication. Microelectromechanical Systems, Journal of, 20(3):594 –600, june 2011.
    [74] A.A.A. Aarts, H.P. Neves, R.P. Puers, and C.V. Hoof. An interconnect for out-of-plane assembled biomedical probe arrays. Journal of Micromechanics and Microengineering, 18(6):064004, 2008.
    [75] S. Kisban, T. Holzhammer, S. Herwik, O. Paul, and P. Ruther. Novel method for the assembly and electrical contacting of out-of-plane microstructures. In Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International
    Conference on, pages 484 –487, jan. 2010.
    [76] S. Herwik, T. Holzhammer, O. Paul, and P. Ruther. Out-of-plane assembly of 3d neural probe arrays using a platform with su-8-based thermal actuators. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pages 2323 –2326, june 2011.
    [77] J. Du, M.L. Roukes, and S.C. Masmanidis. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates. Journal of Micromechanics and Microengineering, 19(7):075008, 2009.
    [78] C.W. Chang and J.C. Chiou. Development of a three dimensional neural sensing device by a stacking method. Sensors, 10(5):4238–4252, 2010.
    [79] D.A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K.D. Harris, and G. Buzsáki. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. Journal of Neurophysiology, 84(1):390–400, 2000.
    [80] G. Buzsáki. Large-scale recording of neuronal ensembles. Nature neuroscience, 7(5):446–451, 2004.
    [81] K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, and S.L. BeMent. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. Biomedical Engineering, IEEE Transactions on, 35(9): 719 –732, sept. 1988.
    [82] T.B. Krueger and T. Stieglitz. Effects of electrode miniaturization in micromachined neural prostheses. In Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on, pages 462–465.
    IEEE, 2005.
    [83] G.E. Perlin and K.D. Wise. The effect of the substrate on the extracellular neural activity recorded micromachined silicon microprobes. In Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE, volume 1, pages 2002 –2005, sept. 2004.
    [84] T. Stieglitz. Flexible biomedical microdevices with double-sided electrode arrangements for neural applications. Sensors and Actuators A: Physical, 90(3):203 – 211, 2001.
    [85] T. Stieglitz and M. Gross. Flexible biomems with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sensors and Actuators B: Chemical, 83(1-3):8 – 14, 2002.
    [86] J.P. Seymour, N. Langhals, D. Anderson, and D.R. Kipke. Novel multi-sided, microelectrode arrays for implantable neural applications. Biomedical Microdevices, 13:441–451, 2011.
    [87] G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J.M. Moran, and J. Melzak. Evaluation of mems materials of construction for implantable medical devices. Biomaterials, 23(13):2737–2750, 2002.
    [88] R. Biran, D.C. Martin, and P.A. Tresco. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Experimental neurology, 195(1):115–126, 2005.
    [89] C. Marin and E. Fernández. Biocompatibility of intracortical microelectrodes: current status and future prospects. Frontiers in neuroengineering, 3, 2010.
    [90] K.C. Cheung. Implantable microscale neural interfaces. Biomedical microdevices, 9(6):923–938, 2007.
    [91] Y. Zhong, G.C. McConnell, J.D. Ross, S.P. DeWeerth, and R.V. Bellamkonda. A novel dexamethasone-releasing, anti-inflammatory coating for neural implants. pages 522–525, 2005.
    [92] D.H. Kim and D.C. Martin. Sustained release of dexamethasone from hydrophilic matrices using plga nanoparticles for neural drug delivery. Biomaterials, 27(15):3031 – 3037, 2006.
    [93] S.M. Richardson-Burns, J.L. Hendricks, B. Foster, L.K. Povlich, D.H. Kim, and D.C. Martin. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (pedot) around living neural cells. Biomaterials,28(8):1539 – 1552, 2007.
    [94] J. Che, Y. Xiao, X. Zhu, and X. Sun. Electroynthesized pedot/glutamate chemically modified electrode: a combination of electrical and biocompatible features. Polymer International, 57(5):750–755, 2008.
    [95] P.M. George, D.A. LaVan, J.A. Burdick, C.Y. Chen, E. Liang, and R. Langer. Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Advanced Materials, 18(5):577–581, 2006.
    [96] B.C. Thompson, S.E. Moulton, J.D., R.R., A. Cameron, S. O’Leary, G.G. Wallace, and G.M. Clark. Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. Journal of Control led
    Release, 116(3):285 – 294, 2006.
    [97] P. McCarthy, K. Otto, and M. Rao. Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomedical Microdevices, 13:503–515, 2011. 10.1007/s10544-011-9519-5.
    [98] A. Gilletti and J. Muthuswamy. Brain micromotion around implants in the rodent somatosensory cortex. Journal of Neural Engineering, 3(3):189, 2006.
    [99] Y.T. Kim, R.W. Hitchcock, M.J. Bridge, and P.A. Tresco. Chronic response of adult rat brain tissue to implants anchored to the skull. Biomaterials, 25(12):2229 – 2237, 2004.
    [100] D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, and W. Shain. Brain responses to micro-machined silicon devices. Brain Research, 983:23 – 35, 2003.
    [101] P. Stice, A. Gilletti, A. Panitch, and J. Muthuswamy. Thin microelectrodes reduce gfap expression in the implant site in rodent somatosensory cortex. Journal of Neural Engineering, 4(2):42, 2007.
    [102] J.P. Seymour and D.R. Kipke. Neural probe design for reduced tissue encapsulation in cns. Biomaterials, 28(25):3594–3607, 2007.
    [103] J. Thelin, H. Jorntell, E. Psouni, M. Garwicz, J. Schouenborg, N. Danielsen, and C.E. Linsmeier. Implant size and fixation mode strongly influence tissue reactions in the cns. PLoS ONE, 6(1):e16267, 01 2011.
    [104] H. Kim and K. Najafi. Characterization of low temperature wafer bonding using thin-film parylene. Microelectromechanical Systems, Journal of, 14(6): 1347 – 1355, dec. 2005.
    [105] J.F. Hetke, J.C. Williams, D.S. Pellinen, R.J. Vetter, and D.R. Kipke. 3-d silicon probe array with hybrid polymer interconnect for chronic cortical recording. In Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, pages 181 – 184, march 2003.
    [106] S.C. Bayliss, L.D. Buckberry, I. Fletcher, and M.J. Tobin. The culture of neurons on silicon. Sensors and Actuators A: Physical, 74(1):139–142, 1999.
    [107] T.B. Christensen, C.M. Pedersen, K.G. Grondahl, T.G. Jensen, A. Sekulovic, D.D. Bang, and A. Wolff. Pcr biocompatibility of lab-on-a-chip and mems materials. Journal of Micromechanics and Microengineering, 17(8):1527, 2007.
    [108] J. Bryzek, K. Peterson, and W. McCulley. Micromachines on the march. Spectrum, IEEE, 31(5):20–31, 1994.
    [109] E.W. Keefer, B.R. Botterman, M.I. Romero, A.F. Rossi, and G.W. Gross. Carbon nanotube coating improves neuronal recordings. Nature nanotechnology, 3(7):434–439, 2008.
    [110] C. Hassler, T. Boretius, and T. Stieglitz. Polymers for neural implants. Journal of Polymer Science Part B: Polymer Physics, 49(1):18–33, 2011.
    [111] N. Stark. Literature review: biological safety of parylene c. volume 3, pages 30–35. CANON COMMUNICATIONS, INC., 1996.
    [112] R. Huang, C. Pang, YC Tai, J. Emken, C. Ustun, R. Andersen, and J. Burdick. Integrated parylene-cabled silicon probes for neural prosthetics. In Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International Conference on, pages 240–243. IEEE, 2008.
    [113] D.C. Rodger, A.J. Fong, W. Li, H. Ameri, A.K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P.R. Menon, E. Meng, J.W. Burdick, R.R. Roy, V.R. Edgerton, J.D. Weiland, M.S. Humayun, and Y.C. Tai. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators B: Chemical, 132(2):449 – 460, 2008.
    [114] P. Barthó, H. Hirase, L. Monconduit, M. Zugaro, K.D. Harris, and G. Buzsáki. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. Journal of neurophysiology, 92(1):600–608, 2004.
    [115] S.N. Farrens, P. Bisson, S. Sood, and J. Hermanowski. Thin wafer handling challenges and emerging solutions. 2010.
    [116] F. Niklaus, H. Andersson, P. Enoksson, and G. Stemme. Low temperature full wafer adhesive bonding of structured wafers. Sensors and Actuators A: Physical, 92(1-3):235 – 241, 2001.
    [117] F. Niklaus, P. Enoksson, P. Griss, E. Kalvesten, and G. Stemme. Low-temperature wafer-level transfer bonding. Microelectromechanical Systems, Journal of, 10(4):525 –531, dec 2001.
    [118] J. Oberhammer, F. Niklaus, and G. Stemme. Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities. Sensors and Actuators A: Physical, 105(3):297 – 304, 2003.
    [119] S. Metz, A. Bertsch, and P. Renaud. Partial release and detachment of microfabricated metal and polymer structures by anodic metal dissolution. Microelectromechanical Systems, Journal of, 14(2):383 – 391, april 2005.
    [120] A.A.A. Aarts, O. Srivannavit, K.D. Wise, E. Yoon, R. Puers, C.V. Hoof, and H.P. Neves. Fabrication technique of a compressible biocompatible interconnect using a thin film transfer process. Journal of Micromechanics and Microengineering, 21(7):074012, 2011.
    [121] A. Mercanzini, K. Cheung, D.L. Buhl, M. Boers, A. Maillard, P. Colin, J.C. Bensadoun, A. Bertsch, and P. Renaud. Demonstration of cortical recording using novel flexible polymer neural probes. Sensors and Actuators
    A: Physical, 143(1):90 – 96, 2008.
    [122] S.P. Murarka, I.A. Blech, and H.J. Levinstein. Thin film interaction in aluminum and platinum. Journal of Applied Physics, 47(12):5175–5181, 1976.
    [123] K. Fujimoto, N. Maeda, H. Kitada, K. Suzuki, T. Nakamura, and T. Ohba. Tsv (through silicon via) interconnection on wafer-on-a-wafer (wow) with mems technology. In Solid-State Sensors, Actuators and MicrosystemsConference, 2009. TRANSDUCERS 2009. International, pages 1877–1880. IEEE, 2009.
    [124] C.H. Lin, J.M. Lu, and W. Fang. Encapsulation of film bulk acoustic resonator filters using a wafer-level microcap array. Journal of Micromechanics and Microengineering, 15:1433, 2005.
    [125] HD microsystems. PI-2600 Series Product Bul letin, 2009.
    [126] M. Hopcroft, T. Kramer, G. Kim, K. Takashima, Y. Higo, D. Moore, and J. Brugger. Micromechanical testing of su-8 cantilevers. volume 28, pages 735–742. Wiley Online Library, 2005.
    [127] MICROCHEM. Lor lift-off resist.
    [128] J.A. Dobrzynska and M.A.M. Gijs. Flexible polyimide-based force sensor. Sensors and Actuators A: Physical, 173(1):127 – 135, 2012.
    [129] M.A.L. Nicolelis. Methods for neural ensemble recordings. CRC, 2008.
    [130] Dow Chemical. Processing Procedures for BCB Adhesion. Dow Chemical, June 2007.
    [131] DOW chemical. Processing Procedure for CYCLOTENE 3000 Series Dry Etch Resins. DOW chemical, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE