研究生: |
李侑道 Lee, Yu-Tao |
---|---|
論文名稱: |
增進紀錄能力之微電極陣列的設計與實現 Multielectrode arrays (MEA) with improved recording properties: The design aspects and implementation |
指導教授: |
方維倫
Fang, Weileun 張兗君 Chang, Yen-Chung |
口試委員: |
方維倫
張兗君 林敏雄 陳國聲 鄭裕庭 黃榮堂 葉世榮 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 163 |
中文關鍵詞: | 微電極陣列 、神經探針 、生物相容性 、三維微電極陣列 、雙面神經探針 、polyimide翅狀電極 、玻璃回融技術 、BCB暫時接合技術 |
外文關鍵詞: | multielectrode array, microprobe, biocompatibility, 3D multielectrode array, dual-sided microprobe, polyimide wing electrode, glass reflow process, BCB temporally bonding process |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微電極陣列 (multielectrode array,MEA) 自 1970 年代開始發展並應用於神經科技上。微電極陣列的與傳統電極陣列相比的最大優勢為可在單位面積內提
供高密度的紀錄能力,提供神經網絡中眾多神經細胞產生的訊號。雖然微電極陣列具有上述優勢,但在紀錄範圍、紀錄的效率以及微電極陣列的生物相容性上,仍有許多待提升的空間。本論文針對微電極陣列在紀錄上的特性進行探討,並透由玻璃回融及 benzocyclobutene (BCB) 暫時接合技術製作四種不同形式的微電極陣列。以玻璃為基材的微電極陣列透由將低阻值矽結構內嵌在基座,搭配本論文提出的組裝流程製作出三維的微電極陣列,將二維微電極陣列的紀錄範圍提升為三維的紀錄範圍。一般平面式微電極陣列受限於探針,電極僅能紀錄與電極同側的神經細胞,而無法紀錄探針另一側的神經細胞。針對此議題,本論文透由玻璃回融製程製作具嵌入矽電極的玻璃微電極陣列,另也透由 BCB暫時接合技術實現矽基材雙面微電極陣列。上述兩種微電極陣列則具有量測探針周圍神經細胞,而非只限於量測探針一側的能力。最後本論文透由 BCB 暫時接合技術實現一整合超薄 polyimide 翅狀電極與矽結構探針的微電極陣列。在植入腦組織時,超薄 polyimide 翅狀電極在矽結構探針的輔助下可順利的進行植入。由矽探針側邊外突 polyimide 翅狀結構降低在植入過程中對於腦組織的傷害,同時也使紀錄電極能遠離矽探針在組織中傷害的區域,增進微電極陣列的生物相容性。透過於生物體內實際量測神經訊號,本論文驗證了所製作微電極陣列的量測能力,並且也展示微電極陣列上不同電極的量測特性以及微電極陣列的生物相容性。
The most important advantage of multielectrode array (MEA) is the high recording density, providing rich neural information inside the brain. However, the recording range, efficiency of MEA, and the biocompatibility issues of MEA
still request more effort to make further improvement. Based on two fabrication platforms, the glass reflowing process and benzocyclobutene (BCB) temporally bonding process, this thesis design and implement four different types of MEA.
Glass based MEAs integrated with embedded low-resistance silicon are fabricated, and an assembly process are proposed to implement a 3D glass MEA to extend the recording range. Traditional planar type MEA has restricted recording range at one side of shaft. To address this issue, a glass MEA integrate with embedded silicon electrode and a Si MEA with electrodes on two sides of shaft are fabricated to record neurons around the shaft. In the final part of this thesis, a MEA integrates ultra-thin polyimide wing electrode and thick silicon probe shaft is implemented through the BCB temporally bonding process. The polyimide wing electrodes
protruding from the shaft move the electrodes away from the severe trauma area induced by the silicon shaft, and the ultra-thin polyimide wing are also expected to induce less trauma during insertion. Thus, the biocompatibility of this MEA is improved. The in-vivo neural signal recording result from different types of MEA fabricated in this thesis successfully demonstrate the recording ability, and also demonstrate the recording properties and biocompatibility of specific types of MEA.
[1] W.L.C. Rutten. Neurotechnology. John Wiley & Sons, Inc., 2001.
[2] F.M. Weaver, K. Follett, M. Stern, K. Hur, C. Harris, W.J. Marks Jr, J. Rothlind, O. Sagher, D. Reda, C.S. Moy, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced parkinson disease. JAMA: the journal of the American Medical Association, 301(1): 63–73, 2009.
[3] A. Handforth, C.M. DeGiorgio, S.C. Schachter, B.M. Uthman, D.K. Naritoku, E.S. Tecoma, T.R. Henry, S.D. Collins, B.V. Vaughn, R.C. Gilmartin, et al. Vagus nerve stimulation therapy for partial-onset seizures. Neurology,
51(1):48–55, 1998.
[4] Marius A. Kemler, Gerard A.M. Barendse, Maarten van Kleef, Henrica C.W. de Vet, Coen P.M. Rijks, Carina A. Furnee, and Frans A.J.M. van den Wildenberg. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. New England Journal of Medicine, 343(9):618–624, 2000.
[5] J.N. Ratchford, W. Shore, E.R. Hammond, J.G. Rose, R. Rifkin, P. Nie, K. Tan, M.E. Quigg, B.J. de Lateur, and D.A. Kerr. A pilot study of functional electrical stimulation cycling in progressive multiple sclerosis. NeuroRehabilitation, 27(2):121–128, 2010.
[6] K. Hayward, R. Barker, and S. Brauer. Advances in neuromuscular electrical stimulation for the upper limb post-stroke. Physical Therapy Reviews, 15(4): 309–319, 2010.
[7] M.S. Humayun, J.D. Dorn, L. da Cruz, G. Dagnelie, J.A. Sahel, P.E. Stanga, A.V. Cideciyan, J.L. Duncan, D. Eliott, E. Filley, et al. Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology,
2012.
[8] G. Fayad and B. Elmiyeh. Cochlear implant. In Nadey S. Hakim, editor, Artificial Organs, volume 4 of New Techniques in Surgery Series, pages 133–136. Springer London, 2009.
[9] L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099):164–171, July 2006.
[10] J.D. Simeral, S.P. Kim, M.J. Black, J.P. Donoghue, and L.R. Hochberg. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. Journal of Neural Engineering, 8:025027, 2011.
[11] M. Velliste, S. Perel, M.C. Spalding, A.S. Whitford, and A.B. Schwartz. Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198):1098–1101, 2008.
[12] L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. van der Smagt, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature,
485(7398):372–375, 2012.
[13] A.A. Fomani, R.R. Mansour, C.M. Florez-Quenguan, and P.L. Carlen. Development and characterization of multisite three-dimensional microprobes for deep brain stimulation and recording. Microelectromechanical Systems, Journal of, 20(5):1109 –1118, oct. 2011.
[14] P.S. Motta and J.W. Judy. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-d electroplating process. Biomedical Engineering, IEEE Transactions on, 52(5):923–933, 2005.
[15] H.C.F. Martens, E. Toader, M.M.J. Decré, D.J. Anderson, R. Vetter, D.R. Kipke, K.B. Baker, M.D. Johnson, and J.L. Vitek. Spatial steering of deep brain stimulation volumes using a novel lead design. Clinical Neurophysiology, 122(3):558–566, 2011.
[16] J. Csicsvari, D.A. Henze, B. Jamieson, K.D. Harris, A. Sirota, P. Barthó, K.D. Wise, and G. Buzsáki. Massively parallel recording of unit and local field potentials with silicon-based electrodes. Journal of neurophysiology,
90(2):1314–1323, 2003.
[17] G.G. Matthews. Neurobiology: molecules, cel ls, and systems. Wiley Blackwell, 2001.
[18] T.H. Bullock and G.A. Horridge. Structure and function in the nervous systems of invertebrates. San Francisco, 1965.
[19] S.F. Cogan. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng., 10:275–309, 2008.
[20] R. Sherman-Gold. The axon guide for electrophysiology & biophysics: laboratory techniques. Axon Instruments, 1993.
[21] B. Sakmann and E. Neher. Single-channel recording. Springer, 2009.
[22] S. Musallam, M.J. Bak, P.R. Troyk, and R.A. Andersen. A floating metal microelectrode array for chronic implantation. Journal of Neuroscience Methods, 160(1):122 – 127, 2007.
[23] D. McCreery, A. Lossinsky, V. Pikov, and X. Liu. Microelectrode array for chronic deep-brain microstimulation and recording. Biomedical Engineering, IEEE Transactions on, 53(4):726 –737, april 2006.
[24] J.D. Kralik, D.F. Dimitrov, D.J. Krupa, D.B. Katz, D. Cohen, and M.A.L. Nicolelis. Techniques for chronic, multisite neuronal ensemble recordings in behaving animals. Methods, 25(2):121 – 150, 2001.
[25] C. Bedard, H. Kroger, and A. Destexhe. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical journal, 86(3):1829–1842, 2004.
[26] M.A. Moffitt and C.C. McIntyre. Model-based analysis of cortical recording with silicon microelectrodes. Clinical Neurophysiology, 116(9):2240 – 2250, 2005.
[27] M.P.Ward, P. Rajdev, C. Ellison, and P.P. Irazoqui. Toward a comparison of microelectrodes for acute and chronic recordings. Brain research, 1282:183–200, 2009.
[28] T. Sakurai and K. Tamaru. Simple formulas for two-and three-dimensional capacitances. Electron Devices, IEEE Transactions on, 30(2):183–185, 1983.
[29] J. Du, I.H. Riedel-Kruse, J.C. Nawroth, M.L. Roukes, G. Laurent, and S.C. Masmanidis. High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays. Journal of Neuro-
physiology, 101(3):1671–1678, 2009.
[30] K. Najafi, J. Ji, and K.D. Wise. Scaling limitations of silicon multichannel recording probes. Biomedical Engineering, IEEE Transactions on, 37(1):1 –11, jan. 1990.
[31] S. Kisban. Silicon-Based Neural Devices: Packaging and Application. PhD thesis, IMTEK, University of Freiburg, 2010.
[32] http://www.trianglebiosystems.com.
[33] http://www.plexon.com.
[34] J. Webster. Medical instrumentation: application and design. Wiley-India, 2009.
[35] S.F. Lempka, M.D. Johnson, M.A. Moffitt, K.J. Otto, D.R. Kipke, and C.C. McIntyre. Theoretical analysis of intracortical microelectrode recordings. Journal of Neural Engineering, 8(4):045006, 2011.
[36] Inc Encyclopedia Britannica.
[37] J. Gregory, X. Jia, and R. Williams. Particle deposition and aggregation: measurement, model ling and simulation. Butterworth-Heinemann, 1998.
[38] S. Waldert, T. Pistohl, C. Braun, T. Ball, A. Aertsen, and C. Mehring. A review on directional information in neural signals for brain-machine interfaces. Journal of Physiology-Paris, 103(3-5):244–254, 2009.
[39] J. Dolbow and M. Gosz. Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mechanics of materials, 23(4):311–321, 1996.
[40] T.J. Hall, M. Bilgen, M.F. Insana, and T.A. Krouskop. Phantom materials for elastography. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 44(6):1355 –1365, nov 1997.
[41] K.D. Wise, J.B. Angell, and A. Starr. An integrated-circuit approach to extracellular microelectrodes. Biomedical Engineering, IEEE Transactions on, BME-17(3):238 –247, july 1970.
[42] K.D. Wise and J. Angell. A microprobe with integrated amplifiers for neurophysiology. In Solid-State Circuits Conference. Digest of Technical Papers. 1971 IEEE International, volume 14, pages 100–101. IEEE, 1971.
[43] K. Najafi, K.D. Wise, and T. Mochizuki. A high-yield ic-compatible multichannel recording array. Electron Devices, IEEE Transactions on, 32(7): 1206 – 1211, jul 1985.
[44] Neuronexus. 2011 catalog. 2011.
[45] D.T. Kewley, M.D. Hills, D.A. Borkholder, I.E. Opris, N.I. Maluf, C.W. Storment, J.M. Bower, and G.T.A. Kovacs. Plasma-etched neural probes. Sensors and Actuators A: Physical, 58(1):27 – 35, 1997. Micromechanics Sections of Sensors and Actuators.
[46] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U.G. Hofmann. A 32-site neural recording probe fabricated by drie of soi substrates. Journal of Micromechanics and Microengineering, 12(4):414, 2002.
[47] S. Herwik, O. Paul, and P. Ruther. Ultrathin silicon chips of arbitrary shape by etching before grinding. Microelectromechanical Systems, Journal of, 20(4):791 –793, aug. 2011.
[48] P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, and R.A. Normann. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. Biomedical Engineering, IEEE Transactions on, 38(8):758 –768, aug. 1991.
[49] K.E. Jones, P.K. Campbell, and R.A. Normann. A glass/silicon composite intracortical electrode array. Annals of biomedical engineering, 20(4):423–437, 1992.
[50] P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher. Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge
machining for neural applications. In Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, pages 1206 –1209, june 2009.
[51] R. Bhandari, S. Negi, L. Rieth, R.A. Normann, and F. Solzbacher. A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sensors and Actuators A: Physical, 145-146:123 – 130, 2008.
[52] D.S. Pellinen, T. Moon, R.J. Vetter, R. Miriani, and D.R. Kipke. Multifunctional flexible parylene-based intracortical microelectrodes. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual
International Conference of the, pages 5272–5275. IEEE, 2005.
[53] D. Ziegler, T. Suzuki, and S. Takeuchi. Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene. Microelectromechanical Systems, Journal of, 15(6):1477 –1482, dec. 2006.
[54] K.C. Cheung, P. Renaud, H. Tanila, and K. Djupsund. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors and Bioelectronics, 22(8):1783–1790, 2007.
[55] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita. 3d flexible multichannel neural probe array. Journal of Micromechanics and Microengineering, 14(1): 104, 2004.
[56] Y.Y. Chen, H.Y. Lai, S.H. Lin, C.W. Cho, W.H. Chao, C.H. Liao, S. Tsang, Y.F. Chen, and S.Y. Lin. Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic
lesion in rat brain. Journal of neuroscience methods, 182(1):6–16, 2009.
[57] K. Lee, J. He, R. Clement, S. Massia, and B. Kim. Biocompatible benzocyclobutene (bcb)-based neural implants with micro-fluidic channel. Biosensors and Bioelectronics, 20(2):404 – 407, 2004. Special Issue in Honour of
Professor Pierre Coulet.
[58] M. Tijero, G. Gabriel, J. Caro, A. Altuna, R. Hernandez, R. Villa, J. Berganzo, F.J. Blanco, R. Salido, and L.J. Fernandez. Su-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
Biosensors and Bioelectronics, 24(8):2410 – 2416, 2009.
[59] C.H. Chen, S.C. Chuang, H.C. Su, W.L. Hsu, T.R. Yew, Y.C. Chang, S.R. Yeh, and D.J. Yao. A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. Lab Chip, 11(9):1647–
1655, 2011.
[60] J. Subbaroyan, D.C. Martin, and D.R. Kipke. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. Journal of Neural Engineering, 2(4):103–113, 2005.
[61] A.A. Fomani and R.R. Mansour. Fabrication and characterization of the flexible neural microprobes with improved structural design. Sensors and Actuators A: Physical, 168(2):233 – 241, 2011.
[62] D. Egert, R.L. Peterson, and K. Najafi. Parylene microprobes with engineered stiffness and shape for improved insertion. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pages 198 –201, june 2011.
[63] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip, 5(5): 519–523, 2005.
[64] A. Hess, J. Dunning, J. Harris, J.R. Capadona, K. Shanmuganathan, S.J. Rowan, C. Weder, D.J. Tyler, and C.A. Zorman. A bio-inspired, chemoresponsive polymer nanocomposite for mechanically dynamic microsystems.
pages 224–227, 2009.
[65] T.A. Fofonoff, S.M. Martel, N.G. Hatsopoulos, J.P. Donoghue, and I.W. Hunter. Microelectrode array fabrication by electrical discharge machining and chemical etching. Biomedical Engineering, IEEE Transactions on, 51(6): 890 –895, june 2004.
[66] P. McCarthy, K. Otto, and M. Rao. Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomedical Microdevices, 13:503–515, 2011. 10.1007/s10544-011-9519-5.
[67] K.A. Moxon, S.C. Leiser, G.A. Gerhardt, K.A. Barbee, and J.K. Chapin. Ceramic-based multisite electrode arrays for chronic single-neuron recording. Biomedical Engineering, IEEE Transactions on, 51(4):647–656, 2004.
[68] C.W. Lin, Y.T. Lee, C.W. Chang, W.L. Hsu, Y.C. Chang, and W. Fang. Novel glass microprobe arrays for neural recording. Biosensors and Bioelectronics, 25(2):475 – 481, 2009.
[69] M.F. Wang, T. Maleki, and B. Ziaie. A self-assembled 3d microelectrode array. Journal of Micromechanics and Microengineering, 20(3):035013, 2010.
[70] Q. Bai, K.D.Wise, and D.J. Anderson. A high-yield microassembly structure for three-dimensional microelectrode arrays. Biomedical Engineering, IEEE Transactions on, 47(3):281 –289, march 2000.
[71] Y. Yao, M.N. Gulari, J.A. Wiler, and K.D. Wise. A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications. Microelectromechanical Systems, Journal of, 16(4):977 –988, aug. 2007.
[72] G.E. Perlin and K.D. Wise. An ultra compact integrated front end for wireless neural recording microsystems. Microelectromechanical Systems, Journal of, 19(6):1409 –1421, dec. 2010.
[73] S.M.E. Merriam, O. Srivannavit, M.N. Gulari, and K.D. Wise. A three dimensional 64-site folded electrode array using planar fabrication. Microelectromechanical Systems, Journal of, 20(3):594 –600, june 2011.
[74] A.A.A. Aarts, H.P. Neves, R.P. Puers, and C.V. Hoof. An interconnect for out-of-plane assembled biomedical probe arrays. Journal of Micromechanics and Microengineering, 18(6):064004, 2008.
[75] S. Kisban, T. Holzhammer, S. Herwik, O. Paul, and P. Ruther. Novel method for the assembly and electrical contacting of out-of-plane microstructures. In Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International
Conference on, pages 484 –487, jan. 2010.
[76] S. Herwik, T. Holzhammer, O. Paul, and P. Ruther. Out-of-plane assembly of 3d neural probe arrays using a platform with su-8-based thermal actuators. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pages 2323 –2326, june 2011.
[77] J. Du, M.L. Roukes, and S.C. Masmanidis. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates. Journal of Micromechanics and Microengineering, 19(7):075008, 2009.
[78] C.W. Chang and J.C. Chiou. Development of a three dimensional neural sensing device by a stacking method. Sensors, 10(5):4238–4252, 2010.
[79] D.A. Henze, Z. Borhegyi, J. Csicsvari, A. Mamiya, K.D. Harris, and G. Buzsáki. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. Journal of Neurophysiology, 84(1):390–400, 2000.
[80] G. Buzsáki. Large-scale recording of neuronal ensembles. Nature neuroscience, 7(5):446–451, 2004.
[81] K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, and S.L. BeMent. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. Biomedical Engineering, IEEE Transactions on, 35(9): 719 –732, sept. 1988.
[82] T.B. Krueger and T. Stieglitz. Effects of electrode miniaturization in micromachined neural prostheses. In Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on, pages 462–465.
IEEE, 2005.
[83] G.E. Perlin and K.D. Wise. The effect of the substrate on the extracellular neural activity recorded micromachined silicon microprobes. In Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE, volume 1, pages 2002 –2005, sept. 2004.
[84] T. Stieglitz. Flexible biomedical microdevices with double-sided electrode arrangements for neural applications. Sensors and Actuators A: Physical, 90(3):203 – 211, 2001.
[85] T. Stieglitz and M. Gross. Flexible biomems with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sensors and Actuators B: Chemical, 83(1-3):8 – 14, 2002.
[86] J.P. Seymour, N. Langhals, D. Anderson, and D.R. Kipke. Novel multi-sided, microelectrode arrays for implantable neural applications. Biomedical Microdevices, 13:441–451, 2011.
[87] G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J.M. Moran, and J. Melzak. Evaluation of mems materials of construction for implantable medical devices. Biomaterials, 23(13):2737–2750, 2002.
[88] R. Biran, D.C. Martin, and P.A. Tresco. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Experimental neurology, 195(1):115–126, 2005.
[89] C. Marin and E. Fernández. Biocompatibility of intracortical microelectrodes: current status and future prospects. Frontiers in neuroengineering, 3, 2010.
[90] K.C. Cheung. Implantable microscale neural interfaces. Biomedical microdevices, 9(6):923–938, 2007.
[91] Y. Zhong, G.C. McConnell, J.D. Ross, S.P. DeWeerth, and R.V. Bellamkonda. A novel dexamethasone-releasing, anti-inflammatory coating for neural implants. pages 522–525, 2005.
[92] D.H. Kim and D.C. Martin. Sustained release of dexamethasone from hydrophilic matrices using plga nanoparticles for neural drug delivery. Biomaterials, 27(15):3031 – 3037, 2006.
[93] S.M. Richardson-Burns, J.L. Hendricks, B. Foster, L.K. Povlich, D.H. Kim, and D.C. Martin. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (pedot) around living neural cells. Biomaterials,28(8):1539 – 1552, 2007.
[94] J. Che, Y. Xiao, X. Zhu, and X. Sun. Electroynthesized pedot/glutamate chemically modified electrode: a combination of electrical and biocompatible features. Polymer International, 57(5):750–755, 2008.
[95] P.M. George, D.A. LaVan, J.A. Burdick, C.Y. Chen, E. Liang, and R. Langer. Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Advanced Materials, 18(5):577–581, 2006.
[96] B.C. Thompson, S.E. Moulton, J.D., R.R., A. Cameron, S. O’Leary, G.G. Wallace, and G.M. Clark. Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. Journal of Control led
Release, 116(3):285 – 294, 2006.
[97] P. McCarthy, K. Otto, and M. Rao. Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomedical Microdevices, 13:503–515, 2011. 10.1007/s10544-011-9519-5.
[98] A. Gilletti and J. Muthuswamy. Brain micromotion around implants in the rodent somatosensory cortex. Journal of Neural Engineering, 3(3):189, 2006.
[99] Y.T. Kim, R.W. Hitchcock, M.J. Bridge, and P.A. Tresco. Chronic response of adult rat brain tissue to implants anchored to the skull. Biomaterials, 25(12):2229 – 2237, 2004.
[100] D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, and W. Shain. Brain responses to micro-machined silicon devices. Brain Research, 983:23 – 35, 2003.
[101] P. Stice, A. Gilletti, A. Panitch, and J. Muthuswamy. Thin microelectrodes reduce gfap expression in the implant site in rodent somatosensory cortex. Journal of Neural Engineering, 4(2):42, 2007.
[102] J.P. Seymour and D.R. Kipke. Neural probe design for reduced tissue encapsulation in cns. Biomaterials, 28(25):3594–3607, 2007.
[103] J. Thelin, H. Jorntell, E. Psouni, M. Garwicz, J. Schouenborg, N. Danielsen, and C.E. Linsmeier. Implant size and fixation mode strongly influence tissue reactions in the cns. PLoS ONE, 6(1):e16267, 01 2011.
[104] H. Kim and K. Najafi. Characterization of low temperature wafer bonding using thin-film parylene. Microelectromechanical Systems, Journal of, 14(6): 1347 – 1355, dec. 2005.
[105] J.F. Hetke, J.C. Williams, D.S. Pellinen, R.J. Vetter, and D.R. Kipke. 3-d silicon probe array with hybrid polymer interconnect for chronic cortical recording. In Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, pages 181 – 184, march 2003.
[106] S.C. Bayliss, L.D. Buckberry, I. Fletcher, and M.J. Tobin. The culture of neurons on silicon. Sensors and Actuators A: Physical, 74(1):139–142, 1999.
[107] T.B. Christensen, C.M. Pedersen, K.G. Grondahl, T.G. Jensen, A. Sekulovic, D.D. Bang, and A. Wolff. Pcr biocompatibility of lab-on-a-chip and mems materials. Journal of Micromechanics and Microengineering, 17(8):1527, 2007.
[108] J. Bryzek, K. Peterson, and W. McCulley. Micromachines on the march. Spectrum, IEEE, 31(5):20–31, 1994.
[109] E.W. Keefer, B.R. Botterman, M.I. Romero, A.F. Rossi, and G.W. Gross. Carbon nanotube coating improves neuronal recordings. Nature nanotechnology, 3(7):434–439, 2008.
[110] C. Hassler, T. Boretius, and T. Stieglitz. Polymers for neural implants. Journal of Polymer Science Part B: Polymer Physics, 49(1):18–33, 2011.
[111] N. Stark. Literature review: biological safety of parylene c. volume 3, pages 30–35. CANON COMMUNICATIONS, INC., 1996.
[112] R. Huang, C. Pang, YC Tai, J. Emken, C. Ustun, R. Andersen, and J. Burdick. Integrated parylene-cabled silicon probes for neural prosthetics. In Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International Conference on, pages 240–243. IEEE, 2008.
[113] D.C. Rodger, A.J. Fong, W. Li, H. Ameri, A.K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P.R. Menon, E. Meng, J.W. Burdick, R.R. Roy, V.R. Edgerton, J.D. Weiland, M.S. Humayun, and Y.C. Tai. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators B: Chemical, 132(2):449 – 460, 2008.
[114] P. Barthó, H. Hirase, L. Monconduit, M. Zugaro, K.D. Harris, and G. Buzsáki. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. Journal of neurophysiology, 92(1):600–608, 2004.
[115] S.N. Farrens, P. Bisson, S. Sood, and J. Hermanowski. Thin wafer handling challenges and emerging solutions. 2010.
[116] F. Niklaus, H. Andersson, P. Enoksson, and G. Stemme. Low temperature full wafer adhesive bonding of structured wafers. Sensors and Actuators A: Physical, 92(1-3):235 – 241, 2001.
[117] F. Niklaus, P. Enoksson, P. Griss, E. Kalvesten, and G. Stemme. Low-temperature wafer-level transfer bonding. Microelectromechanical Systems, Journal of, 10(4):525 –531, dec 2001.
[118] J. Oberhammer, F. Niklaus, and G. Stemme. Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities. Sensors and Actuators A: Physical, 105(3):297 – 304, 2003.
[119] S. Metz, A. Bertsch, and P. Renaud. Partial release and detachment of microfabricated metal and polymer structures by anodic metal dissolution. Microelectromechanical Systems, Journal of, 14(2):383 – 391, april 2005.
[120] A.A.A. Aarts, O. Srivannavit, K.D. Wise, E. Yoon, R. Puers, C.V. Hoof, and H.P. Neves. Fabrication technique of a compressible biocompatible interconnect using a thin film transfer process. Journal of Micromechanics and Microengineering, 21(7):074012, 2011.
[121] A. Mercanzini, K. Cheung, D.L. Buhl, M. Boers, A. Maillard, P. Colin, J.C. Bensadoun, A. Bertsch, and P. Renaud. Demonstration of cortical recording using novel flexible polymer neural probes. Sensors and Actuators
A: Physical, 143(1):90 – 96, 2008.
[122] S.P. Murarka, I.A. Blech, and H.J. Levinstein. Thin film interaction in aluminum and platinum. Journal of Applied Physics, 47(12):5175–5181, 1976.
[123] K. Fujimoto, N. Maeda, H. Kitada, K. Suzuki, T. Nakamura, and T. Ohba. Tsv (through silicon via) interconnection on wafer-on-a-wafer (wow) with mems technology. In Solid-State Sensors, Actuators and MicrosystemsConference, 2009. TRANSDUCERS 2009. International, pages 1877–1880. IEEE, 2009.
[124] C.H. Lin, J.M. Lu, and W. Fang. Encapsulation of film bulk acoustic resonator filters using a wafer-level microcap array. Journal of Micromechanics and Microengineering, 15:1433, 2005.
[125] HD microsystems. PI-2600 Series Product Bul letin, 2009.
[126] M. Hopcroft, T. Kramer, G. Kim, K. Takashima, Y. Higo, D. Moore, and J. Brugger. Micromechanical testing of su-8 cantilevers. volume 28, pages 735–742. Wiley Online Library, 2005.
[127] MICROCHEM. Lor lift-off resist.
[128] J.A. Dobrzynska and M.A.M. Gijs. Flexible polyimide-based force sensor. Sensors and Actuators A: Physical, 173(1):127 – 135, 2012.
[129] M.A.L. Nicolelis. Methods for neural ensemble recordings. CRC, 2008.
[130] Dow Chemical. Processing Procedures for BCB Adhesion. Dow Chemical, June 2007.
[131] DOW chemical. Processing Procedure for CYCLOTENE 3000 Series Dry Etch Resins. DOW chemical, 2008.