簡易檢索 / 詳目顯示

研究生: 吳信茂
論文名稱: 以 lysine-preferred racemases 之晶體結構探討受質及 PLP 之結合架構
Crystal structures of lysine-preferred racemases provide insights into substrate and PLP binding frameworks
指導教授: 王雯靜
口試委員: 王雯靜
許宗雄
林彩雲
許文輝
楊進木
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 92
中文關鍵詞: 離胺酸消旋酵素廣受質胺基酸消旋酵素蛋白質立體結構受質專一性
外文關鍵詞: lysine racemase, broad-specificity amino acid racemase, protein structure, substrate specificity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離胺酸消旋酵素(lysine racemase, Lyr),是負責離胺酸在兩種鏡像異構物互相轉換的酵素。目前Lyr已知有極大的潛力可應用於轉基因植物上,以Lysine為篩選因子,建立新型的非抗生素篩選機制,以俾應對世界上日漸高漲,對於抗生素基因使用於各項轉基因作物的疑慮。在本篇研究中,我們解出了來自Proteus mirabilis BCRC10725的Lyr蛋白質立體結構,這是世界上第一個被解析建立的Lyr結構。除此之外,我們還建立了來自Pseudomonas putida DSM84的廣受質胺基酸消旋酵素(broad-specificity amino acid racemase, Bar)之立體結構,此結構同樣是世界上第一個建立的Bar 蛋白結構。雖然Lyr的基因序列與丙胺酸消旋酵素(alanine racemase, Alr)有極高的相似度,但Lyr卻顯示出對於離胺酸(lysine)具有高度的消旋活性,另外還有較弱的精胺酸(arginine)消旋活性,除此之外對於其他胺基酸就完全不具活性。相對地,Bar除了對離胺酸有最高的活性之外,還表現出了非常顯著的廣受質特性。Bar的分子立體模型是利用SeMet-Bar蛋白質晶體以及multiwavelength anomalous dispersion (MAD)的方法所建構的,而Lyr便以Bar蛋白結構為模版,進行molecular replacement(MR)的方式去建構其分子模型。Lyr和Bar都具有與Alr類似的蛋白結構摺疊特性:在N端區域是由八段(α螺旋/ β平板)所組成的筒狀結構,其中含有輔因子pyridoxal 5’-phosphate(PLP)結合在其中,而C端區域則主要是由β平板所組成的,並且都形成二聚體(dimer)的堆疊模式。在Lyr與Bar的立體結構之活性區域內都發現有PLP的存在,並且都與蛋白質上專一的lysine殘基(在Lyr上是Lys74,Bar上則為Lys75)形成特殊的aldimine linkage而以protonated Schiff base的形式存在。另外,在Lyr與Bar的結構內都可發現到兩個高度保留的殘基(在Lyr上是Lys74, Tyr299’,而在Bar上則為Lys75, Tyr301’)(’代表在dimer中,位於chain B的位置),這兩個殘基是參與消旋化反應並扮演catalytic bases的重要角色。藉由受質結合位置與各反應殘基在結構上的比較與分析,可協助釐清Lyr, Bar與Alr為何在受質專一性方面有如此顯著的差異性。在本篇研究中,發現Lyr和Bar的10號α螺旋上有兩個關鍵胺基酸殘基(在Lyr上是Thr391, Ser395,而在Bar則為Ala393, Tyr396)皆指向活化區域,且對於受質專一性方面扮演很重要的角色。藉由定點突變法的實驗,發現Lyr的雙重點突變蛋白(T391Y-S394Y)會大幅降低對於lysine的消旋化活性,最終相較於野生型Lyr蛋白只殘留6%的活性。另外在Lyr與Bar的立體結構中,還發現到有兩個重要的胺基酸殘基位置(分別是Lyr上的Arg173, Asn174與Bar上的Arg174, Asn175)對於酵素活性方面有顯著的重要性。除此之外,運由電腦分子模擬的方法,我們分別建立了Lyr與Bar含有不同受質的分子模型,並藉此分析判斷Lyr與Bar在受質選擇性方面的機制差異。我們更建立了一個 Bar-lysine 的複合物蛋白質晶體結構,經過立體結構上的比對,發現此晶體複合物結構與電腦模擬所得之 Bar-lysine 複合物模型具有相當高的立體位置相似度,足以證明本篇文章所使用的電腦模擬方法是相當可靠的。整合本篇所得之結果,可以提出一個Lyr和Bar都適用的可逆消旋反應之酵素機制,並找出數個對於受質專一性與酵素活性具有關鍵重要性的殘基位置,對於了解PLP-dependent amino acid racemase酵素反應的分子機制上有很大的助益。最終,本研究對於設計特殊受質專一性之消旋脢的蛋白質工程提供了結構上的理論基礎,可以更有效地提高對於轉基因植物之非抗生素篩選機制的運作效率,加強此新穎的轉基因植物篩選方法之實質應用性。


    Lysine racemase, an enzyme that catalyzes the interconversion of lysine enantiomers, is valuable to serve as a non-antibiotic selectable marker in the generation of transgenic plants. Here, we have determined the crystal structures of a novel lysine racemase (Lyr) from Proteus mirabilis BCRC10725 and a broad-specificity amino acid racemase (Bar) from Pseudomonas putida DSM84. Lyr showed a level of high acitivity towards lysine and weaker activity towards arginine, whereas the lyr gene was found to share highest identity with the putative alanine racemases. In contrast, the Bar protein presented not only the highest activity towards lysine but also remarkably broad substrate specificity. The structural model of Lyr was established by molecular replacement method within the template: Bar structure, which was solved by using the multiwavelength anomalous dispersion (MAD) method of SeMet-Bar crystal. Both structures demonstrate the fold of alanine racemase, which consists of an N-terminal domain with eight-stranded α/β barrels containing the pyridoxal 5’-phosphate (PLP) cofactor and a C-terminal domain primarily composed of β-strands. Both active sites of Lyr and Bar show that the PLP cofactor forms an aldimine linkage to Lys74 and Lys75 in Lyr and Bar, respectively, as a protonated Schiff base. Two conserved residues are presented in both Lyr (Lys74, Tyr299’) and Bar (Lys75, Tyr301’) to serve as the catalytic bases for racemization. Structural comparison and analysis of substrate binding sites and active residues would assist to clarify the mechanism of variant substrate selectivity. Two key residues (Thr391, Ser394 in Lyr and Ala393, Tyr396 in Bar), which are both located at -helix 10 and point toward the active site, are discovered to play an important role in the substrate specificity. The racemization activity toward lysine of the Lyr double-mutant (T391Y-S394Y) reduces to only 6% compared with the wild-type protein. In addition, two important residues are also investigated in both Lyr and Bar (Arg173, Asn174 and Arg174, Asn175, respectively) and are all in charge of the enzyme activity. Moreover, molecular modeling using different substrates with Lyr or Bar structure assists to elucidate the difference of substrate specificity between Lyr and Bar. A Bar-lysine liganded crystal structure is also established here and helps to prove that the docking approach used in this study is dependable according to the structural similarity between docking model and crystal structure of Bar-lysine complex. Together, our results suggest a proposed mechanism for the reversible racemization reaction of both enzymes described here and point out the key residues responsible for the substrate specificity and enzyme activity. This work provides a structural foundation for the design of racemases with pre-determined substrate specificity and assists in improving the reliability of the non-antibiotic selection system for transgenic plants.

    中文摘要_01 Abstract_03 誌謝_05 Abbreviations_11 1. Introduction 1.1 Novel non-antibiotic selection system for transgenic plants_15 1.2 Amino acid racemase_16 1.3 Alanine racemase (Alr)_17 1.4 Lysine racemase (Lyr)_18 1.5 Broad-substrate-specificity amino acid racemase (Bar)_19 1.6 Structure-based analysis of substrate specificity of PLP-dependent amino acid racemases_20 2. Material and Methods 2.1 Cloning, expression, and purification_21 2.2 Site-directed mutagenesis_22 2.3 Circular dichroism spectra_22 2.4 Enzyme assay_22 2.5 Crystallization_23 2.6 X-ray data collection and processing_25 2.7 Structure determination and refinement_25 2.8 Structural and sequence comparisons_26 2.9 Structural modeling_27 3. Results 3.1 Structure description of Lyr and Bar_29 3.2 Structural comparisons_30 3.3 Analysis of the entryway_31 3.4 Racemase active sites_32 3.5 Lyr and Bar substrate binding cavities_33 3.6 Effects of mutations on enzymatic activity_33 3.7 The complex models of Lyr and Bar_36 4. Discussion 4.1 Catalytic mechanism_39 4.2 Substrate specificity of PLP-dependent amino acid racemase_41 5. References_43 Tables_53 Figures_65

    1. Miki, B., and McHugh, S. (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107, 193-232
    2. ACNFP. (1994) Report on the use of antibiotic resistance markers in genetically modified food organisms. Advisory Committee on Novel Foods and Processes. Department of Health and Ministry of Agriculture, Fisheries and Food, London.
    3. Ebmeier, A., Allison, L., Cerutti, H., and Clemente, T. (2004) Evaluation of the Escherichia coli threonine deaminase gene as a selectable marker for plant transformation. Planta 218, 751-758
    4. You, S. J., Liau, C. H., Huang, H. E., Feng, T. Y., Prasad, V., Hsiao, H. H., Lu, J. C., and Chan, M. T. (2003) Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217, 60-65
    5. Luo, K. M., Zheng, X. L., Chen, Y. Q., Xiao, Y. H., Zhao, D. G., McAvoy, R., Pei, Y., and Li, Y. (2006) The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Rep. 25, 403-409
    6. Erikson, O., Hertzberg, M., and Nasholm, T. (2005) The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation. Plant Mol. Biol. 57, 425-433
    7. Chen, I. C., Thiruvengadam, V., Lin, W. D., Chang, H. H., and Hsu, W. H. (2010) Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol. Biol. 72, 153-169
    8. Walsh, C. T. (1989) Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J. Biol. Chem. 264, 2393-2396
    9. Watanabe, T., Shibata, K., Kera, Y., and Yamada, R. (1998) Occurrence of free D-aspartate and aspartate racemase in the blood shell Scapharca broughtonii. Amino acids 14, 353-360
    10. Sarower, M. G., Matsui, T., and Abe, H. (2003) Distribution and characteristics of D-amino acid and D-aspartate oxidases in fish tissues. J. Exp. Zool. Part A 295, 151-159
    11. Uo, T., Yoshimura, T., Tanaka, N., Takegawa, K., and Esaki, N. (2001) Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eucaryotic counterpart to bacterial alanine racemase. J. Bacteriol. 183, 2226-2233
    12. Ogawa, T., Fukuda, M., and Sasaoka, K. (1973) Occurrence of N-malonyl-D-alanine in pea seedlings. Biochimica. et Biophysica. Acta. 297, 60-69
    13. Corrigan, J. J. (1969) D-amino acids in animals. Science 164, 142-149
    14. Hashimoto, A., Nishikawa, T., Oka, T., Takahashi, K., and Hayashi, T. (1992) Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-L-cysteine and o-phthaldialdehyde. J. Chromatogr. 582, 41-48
    15. Caparros, M., Pisabarro, A. G., and de Pedro, M. A. (1992) Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. J. Bacteriol.174, 5549-5559
    16. Schleifer, K. H. (1975) Chemical structure of the peptidoglycan, its modifiability and relation to the biological activity. Z. Immunitatsforsch. Exp. Klin. Immunol. 149, 104-117
    17. Macdonald, J. C. (1960) Biosynthesis of valinomycin. Can. J. Microbiol. 6, 27-34
    18. Saito, M., Hori, K., Kurotsu, T., Kanda, M., and Saito, Y. (1995) Three conserved glycine residues in valine activation of gramicidin S synthetase 2 from Bacillus brevis. J. Biochem. 117, 276-282
    19. Stein, T., Kluge, B., Vater, J., Franke, P., Otto, A., and Wittmann-Liebold, B. (1995) Gramicidin S synthetase 1 (phenylalanine racemase), a prototype of amino acid racemases containing the cofactor 4'-phosphopantetheine. Biochemistry 34, 4633-4642
    20. Wolosker, H., Blackshaw, S., and Snyder, S. H. (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc. Natl. Acad. Sci. USA 96, 13409-13414
    21. Nagata, Y., Homma, H., Matsumoto, M., and Imai, K. (1999) Stimulation of steroidogenic acute regulatory protein (StAR) gene expression by D-aspartate in rat Leydig cells. FEBS letters 454, 317-320
    22. Choi, S. Y., Esaki, N., Ashiuchi, M., Yoshimura, T., and Soda, K. (1994) Bacterial glutamate racemase has high sequence similarity with myoglobins and forms an equimolar inactive complex with hemin. Proc. Natl. Acad. Sci. USA 91, 10144-10147
    23. Gallo, K. A., Tanner, M. E., and Knowles, J. R. (1993) Mechanism of the reaction catalyzed by glutamate racemase. Biochemistry 32, 3991-3997
    24. Yoshimura, T., and Esak, N. (2003) Amino acid racemases: functions and mechanisms. J. Biosci. Bioeng. 96, 103-109
    25. Okubo, Y., Yokoigawa, K., Esaki, N., Soda, K., and Kawai, H. (1999) Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus. Biochem. Biophys. Res. Commun. 256, 333-340
    26. Oikawa, T., Tauch, A., Schaffer, S., and Fujioka, T. (2006) Expression of alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli and molecular characterization of the recombinant alanine racemase. J. Biotechnol. 125, 503-512
    27. Chen, H. P., Lin, C. F., Lee, Y. J., Tsay, S. S., and Wu, S. H. (2000) Purification and properties of ornithine racemase from Clostridium sticklandii. J. Bacteriol. 182, 2052-2054
    28. Lilley, P. E., Stamford, N. P., Vasudevan, S. G., and Dixon, N. E. (1993) The 92-min region of the Escherichia coli chromosome: location and cloning of the ubiA and alr genes. Gene 129, 9-16
    29. Esaki, N., and Walsh, C. T. (1986) Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochemistry 25, 3261-3267
    30. Ono, K., Yanagida, K., Oikawa, T., Ogawa, T., and Soda, K. (2006) Alanine racemase of alfalfa seedlings (Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants. Phytochemistry 67, 856-860
    31. Shaw, J. P., Petsko, G. A., and Ringe, D. (1997) Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-A resolution. Biochemistry 36, 1329-1342
    32. Stamper, G. F., Morollo, A. A., and Ringe, D. (1998) Reaction of alanine racemase with 1-aminoethylphosphonic acid forms a stable external aldimine. Biochemistry 37, 10438-10445
    33. Morollo, A. A., Petsko, G. A., and Ringe, D. (1999) Structure of a Michaelis complex analogue: propionate binds in the substrate carboxylate site of alanine racemase. Biochemistry 38, 3293-3301
    34. Noda, M., Matoba, Y., Kumagai, T., and Sugiyama, M. (2004) Structural evidence that alanine racemase from a D-cycloserine-producing microorganism exhibits resistance to its own product. J. Biol. Chem. 279, 46153-46161
    35. Watanabe, A., Yoshimura, T., Mikami, B., Hayashi, H., Kagamiyama, H., and Esaki, N. (2002) Reaction mechanism of alanine racemase from Bacillus stearothermophilus: x-ray crystallographic studies of the enzyme bound with N-(5'-phosphopyridoxyl)alanine. J. Biol. Chem. 277, 19166-19172
    36. LeMagueres, P., Im, H., Dvorak, A., Strych, U., Benedik, M., and Krause, K. L. (2003) Crystal structure at 1.45 A resolution of alanine racemase from a pathogenic bacterium, Pseudomonas aeruginosa, contains both internal and external aldimine forms. Biochemistry 42, 14752-14761
    37. Watanabe, A., Kurokawa, Y., Yoshimura, T., Kurihara, T., Soda, K., and Esaki, N. (1999) Role of lysine 39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5'-phosphate. Chemical rescue studies of Lys39 --> Ala mutant. J. Biol. Chem. 274, 4189-4194
    38. Watanabe, A., Yoshimura, T., Mikami, B., and Esaki, N. (1999) Tyrosine 265 of alanine racemase serves as a base abstracting alpha-hydrogen from L-alanine: the counterpart residue to lysine 39 specific to D-alanine. J. Biochem. 126, 781-786
    39. Sun, S., and Toney, M. D. (1999) Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase. Biochemistry 38, 4058-4065
    40. Lambert, M. P., and Neuhaus, F. C. (1972) Mechanism of D-cycloserine action: alanine racemase from Escherichia coli. J. Bacteriol. 110, 978-987
    41. Silverman, R. B. (1988) The potential use of mechanism-based enzyme inactivators in medicine. J. Enzym. Inhib. 2, 73-90
    42. Boniface, A., Parquet, C., Arthur, M., Mengin-Lecreulx, D., and Blanot, D. (2009) The elucidation of the structure of Thermotoga maritima peptidoglycan reveals two novel types of cross-link. J. Biol. Chem. 284, 21856-21862
    43. Vollmer, W., Blanot, D., and de Pedro, M. A. (2008) Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149-167
    44. Huang, H. T., Kita, D. A., and Davisson, J. W. (1958) Racemization of Lysine by Proteus Vulgaris. J. Am. Chem. Soc. 80, 1006-1007
    45. Chang, Y. F., and Adams, E. (1974) D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. J. Bacteriol. 117, 753-764
    46. Huang, H. T., and Davisson, J. W. (1958) Distribution of lysine racemase in bacteria. J. Bacteriol. 76, 495-498
    47. Chen, I. C., Lin, W. D., Hsu, S. K., Thiruvengadam, V., and Hsu, W. H. (2009) Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl. Environ. Microbiol. 75, 5161-5166
    48. Kuan, Y. C., Kao, C. H., Chen, C. H., Chen, C. C., Hu, H. Y., and Hsu, W. H. (2011) Biochemical characterization of a novel lysine racemase from Proteus mirabilis BCRC10725. Process Biochem. 46, 1914-1920
    49. Inagaki, K., Tanizawa, K., Tanaka, H., and Soda, K. (1984) Purification and properties of amino acid racemase from Aeromonas punctata subsp. caviae. Prog. Clin. Biol. Res. 144A, 355-363
    50. Lim, Y. H., Yokoigawa, K., Esaki, N., and Soda, K. (1993) A new amino acid racemase with threonine alpha-epimerase activity from Pseudomonas putida: purification and characterization. J. Bacteriol. 175, 4213-4217
    51. Kino, K., Sato, M., Yoneyama, M., and Kirimura, K. (2007) Synthesis of DL-tryptophan by modified broad specificity amino acid racemase from Pseudomonas putida IFO 12996. Appl. Microbiol. Biotechnol. 73, 1299-1305
    52. Matsui, D., Oikawa, T., Arakawa, N., Osumi, S., Lausberg, F., Stabler, N., Freudl, R., and Eggeling, L. (2009) A periplasmic, pyridoxal-5'-phosphate-dependent amino acid racemase in Pseudomonas taetrolens. Appl. Microbiol. Biotechnol. 83, 1045-1054
    53. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254
    54. Chiu, W. C., You, J. Y., Liu, J. S., Hsu, S. K., Hsu, W. H., Shih, C. H., Hwang, J. K., and Wang, W. C. (2006) Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase. J. Mol. Biol. 359, 741-753
    55. Patrick D. S. S., Stefan A. K., Richard A. B., Naomi E. C., and Peter F. M. B. (2011) Random Microseeding: A Theoretical and Practical Exploration of Seed Stability and Seeding Techniques for Successful Protein Crystallization. Cryst. Growth. Des. web publication
    56. Otwinowski, Z., and Minor, W. (1997) Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Method Enzymol. pp 307-326
    57. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K., and Terwilliger, T. C. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948-1954
    58. Collaborative Computational Project, N. (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760-763
    59. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255
    60. Vagin, A., and Teplyakov, A. (1997) MOLREP: an Automated Program for Molecular Replacement. J. Appl. Cryst. 30, 1022-1025
    61. Lamzin, V. S., and Wilson, K. S. (1993) Automated refinement of protein models. Acta Crystallogr. D Biol. Crystallogr. 49, 129-147
    62. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486-501
    63. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291
    64. Im, H., Sharpe, M. L., Strych, U., Davlieva, M., and Krause, K. L. (2011) The crystal structure of alanine racemase from Streptococcus pneumoniae, a target for structure-based drug design. BMC Microbiol. 11, 116
    65. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110-119
    66. Raghuraman, A., Mosier, P. D., and Desai, U. R. (2006) Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). J. Med. Chem. 49, 3553-3562
    67. Spassov, V. Z., Yan, L., and Flook, P. K. (2007) The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions. Protein Sci. 16, 494-506
    68. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 4, 187-217
    69. Diller, D. J., and Merz, K. M., Jr. (2001) High throughput docking for library design and library prioritization. Proteins 43, 113-124
    70. Fletcher, R., and Reeves, C. M. (1964) Function Minimization by Conjugate Gradients. Comput. J. 7, 149-154
    71. Muegge, I., and Martin, Y. C. (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J. Med. Chem. 42, 791-804
    72. Mayo, S. L., Olafson, B. D., and Goddard, W. A. (1990) Dreiding - a Generic Force-Field for Molecular Simulations. J. Phys. Chem. 94, 8897-8909
    73. Krammer, A., Kirchhoff, P. D., Jiang, X., Venkatachalam, C. M., and Waldman, M. (2005) LigScore: a novel scoring function for predicting binding affinities. J. Mol. Graph. Model. 23, 395-407
    74. Wu, G. S., Robertson, D. H., Brooks, C. L., and Vieth, M. (2003) Detailed analysis of grid-based molecular docking: A case study of CDOCKER - A CHARMm-based MD docking algorithm. J. Comput. Chem. 24, 1549-1562
    75. LeMagueres, P., Im, H., Ebalunode, J., Strych, U., Benedik, M. J., Briggs, J. M., Kohn, H., and Krause, K. L. (2005) The 1.9 A crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site. Biochemistry 44, 1471-1481
    76. Wu, D., Hu, T., Zhang, L., Chen, J., Du, J., Ding, J., Jiang, H., and Shen, X. (2008) Residues Asp164 and Glu165 at the substrate entryway function potently in substrate orientation of alanine racemase from E. coli: Enzymatic characterization with crystal structure analysis. Protein Sci. 17, 1066-1076
    77. Au, K., Ren, J., Walter, T. S., Harlos, K., Nettleship, J. E., Owens, R. J., Stuart, D. I., and Esnouf, R. M. (2008) Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (L-Ala-P). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 327-333
    78. Patrick, W. M., Weisner, J., and Blackburn, J. M. (2002) Site-directed mutagenesis of Tyr354 in Geobacillus stearothermophilus alanine racemase identifies a role in controlling substrate specificity and a possible role in the evolution of antibiotic resistance. Chembiochem 3, 789-792

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE