研究生: |
張庭瑒 Chang, Ting-Yang |
---|---|
論文名稱: |
使用光纖環形共振器之窄線寬單縱模光纖環形雷射之研究 Study of Narrow-Linewidth Single-Longitudinal-Mode Fiber Ring Laser Incorporated with Fiber Ring Resonators |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
黃承彬
Huang, Chen-Bin 劉文豐 Liu, Wen-Feng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 單縱模 、光纖雷射 、窄線寬 |
外文關鍵詞: | Single-Longitudinal Mode, Fiber Laser, Narrow linewidth |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用光纖環形共振器製作出窄線寬且穩定的單縱模摻鉺光纖環形雷射。雷射主要由光纖耦合器製成的單耦合光纖環形共振器(SCFR)和雙耦合光纖環形共振器(DCFR)組成。SCFR與DCFR分別為寬頻的模態濾波器和窄頻寬的通帶帶寬的模態濾波器,兩者藉由游標尺效應,能夠有效抑制多縱模。因此我們得到1.8 kHz的窄線寬雷射,72.9 kHz的頻率跳動幅度與訊雜比達22 dB的單縱模雷射。再藉由改變DCFR的長度與反射率,可得到不同的結果。實驗結果顯示增加DCFR的長度能夠使雷射線寬變窄至1.3 kHz,而降低DCFR的反射率能夠使雷射輸出功率變大1.5倍且頻率跳動幅度降低為原本的38%。最後我們在雷射線寬與頻率跳動幅度稍微變差的情況下,透過自製腔外放大系統放大5.3倍的光功率。以上雷射架構皆由常見的元件製成,降低實驗成本,並且以帶通濾波器(BPF)取代布拉格光纖光柵(FBG),使雷射不受環境溫度以及噪音影響。由於本論文製作出窄且穩定的單縱模雷射,因此可以用來當作相敏光時域反射儀(Phase-Sensitive OTDR)的光源。
In this investigation, we present a narrow-linewidth and stable single-longitudinal-mode (SLM) erbium-doped fiber laser with fiber ring resonators. It consists of a single-coupler fiber ring resonator (SCFR) and a double-coupler fiber ring resonator (DCFR) which are formed by fiber couplers. The SCFR possesses a wide pass-band bandwidth and the DCFR possesses a narrow pass-band bandwidth. The combination of SCFR and DCFR is employed as a high-quality mode filter to eliminate unnecessary longitudinal modes, due to the vernier effect. By using a fiber ring structure incorporated with an SCFR and DCFR, we obtained a single-longitudinal-mode fiber laser. A linewidth of 1.8 kHz with the optical signal to noise ratio of 22 dB and the one-hour frequency drift of 72.9 kHz was achieved.
[1] C. J. Koester and E. Snitzer, “Amplification in a Fiber Laser,” Applied Optics, vol. 3, no. 10, pp. 1182-1186, 1964.
[2] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1442-1463, 1997.
[3] S.V. Shatalin, V.N. Treschikov, and A.J. Rogers, “Interferometric optical time-domain reflectometry for distributed optical-fiber sensing,” Applied Optics, vol.37, no.24, pp. 5600-5604, 1998.
[4] J.C. Juarez, E.W. Maier, K.N. Choi, and H.F. Taylor, “Distributed Fiber-Optic Intrusion Sensor System,” Journal of Lightwave Technology, vol.23, no.6, pp. 2081, 2005.
[5] Q. Chen, T. Liu, K. Liu, J. Jiang, Z. Ding, L. Zhang, Y. Li, L. Pan, and C. Ma, “An Elimination Method of Polarization-Induced Phase Shift and Fading in Dual Mach–Zehnder Interferometry Disturbance Sensing System,” Journal of Lightwave Technology, vol. 31, no. 19, pp. 3135-3141, 2013.
[6] P.R. Hoffman, and M.G. Kuzyk, “Position determination of an acoustic burst along a Sagnac interferometer,” Journal of Lightwave Technology, vol. 22, no. 2, pp. 494-498, 2004.
[7] F. Yin, S. Yang, H. Chen, M. Chen, and S. Xie, “60-nm-Wide Tunable Single-Longitudinal-Mode Ytterbium Fiber Laser With Passive Multiple-Ring Cavity,” IEEE Photonics Technology Letters, vol. 23, no. 22, pp. 1658-1660, 2011.
[8] Z. Wang, J. Shang, K. Mu, S. Yu, and Y. Qiao, “Stable Single-Longitudinal-Mode Fiber Laser With Ultra-Narrow Linewidth Based on Convex-Shaped Fiber Ring and Sagnac Loop,” IEEE Access, vol. 7, pp. 166398-166403, 2019.
[9] S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely Tunable Single Longitudinal Mode Fiber Laser With Cascaded Fiber-Ring Secondary Cavity,” IEEE Photonics Technology Letters, vol. 25, no. 4, pp. 323-326, 2013.
[10] C.H. Yeh, J.Y. Chen, H.Z. Chen, J.H. Chen, and C.W. Chow, “Stable and Tunable Single-Longitudinal-Mode Erbium-Doped Fiber Triple-Ring Laser With Power-Equalized Output,” IEEE Photonics Journal, vol. 8, no. 2, pp. 1-6, 2016.
[11] X.P. Cheng, P. Shum, C.H. Tse, J.L. Zhou, M. Tang, W.C. Tan, R.F. Wu, and J. Zhang, “Single-Longitudinal-Mode Erbium-Doped Fiber Ring Laser Based on High Finesse Fiber Bragg Grating Fabry–PÉrot Etalon,” IEEE Photonics Technology Letters, vol. 20, no. 12, pp. 976-978, 2008.
[12] X. He, X. Fang, C. Liao, D.N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Optics Express, vol. 17, no. 24, pp. 21773-21781, 2009.
[13] T. Feng, F.P. Yan, Q. Li, W.J. Peng, S.Y. Tan, S.C. Feng, P. Liu, and X.D. Wen, “A stable wavelength-tunable single frequency and single polarization linear cavity erbium-doped fiber laser,” Laser Physics, vol. 23, no. 2, pp. 025101, 2013.
[14] K. Zhang and J.U. Kang, “C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser,” Optics Express, vol. 16, no. 18, pp. 14173-14179, 2008.
[15] D.G. Rabus and C. Sada, Ring Resonators: Theory and Modeling, Springer International Publishing, pp. 3-46, 2020.
[16] L. Tang, “Computer analysis of three mode filters through optical couplers for single longitudinal mode fiber laser,” Journal of Physics: Conference Series, vol. 2033, no. 1, pp. 012075, 2021.
[17] https://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer
[18] H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Optics Communications, vol. 155, no. 1, pp. 180-186, 1998.
[19] T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electronics Letters, vol. 16, no. 16, pp. 630-631, 1980.