簡易檢索 / 詳目顯示

研究生: 陳建傑
論文名稱: FEXP模式錯誤假設下之長距相關推論
Long Memory Inference Using FEXP Model Under Model Misspecification
指導教授: 徐南蓉
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 34
中文關鍵詞: 長距相關時間序列FEXP模式Lasso
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的是比較兩種建模的方法在FEXP模式錯誤給定之下,後續統計推論結果的表現。所考慮的兩種方法建模方法分別是以Lasso搭配CV準則,及OLS搭配CP準則來選擇模型。後續推論的比較則是使用三種準則來比較兩種建模的方法下,參數估計與模型選擇的表現。第一種準則直接比較長距相關參數估計量的MSE;第二種準則為在time domain下,比較一期預測的PMSE;第三種準則為在frequency domain下,以MISE做為評比準則。藉由模擬結果得知,長記憶時間序列模式以Lasso搭配CV的方法所選出的模型有較好的推論結果。


    第一章 前言 .......................................... 1 第二章 模型介紹 ...................................... 4 2.1 ARMA模式和Bloomfield模式 ............... 4 2.2 ARFIMA模式和FEXP模式 ................... 5 第三章 估計方法與評比準則 .......................... 8 3.1 OLS與Mallow’s Cp ...................... 9 3.2 Lasso與CV ..............................10 3.3 評比準則 ................................11 第四章 數值模擬 ....................................13 第五章 實證研究 ....................................25 5.1 資料說明 ................................25 5.2 分析結果 ................................26 第六章 結論 ........................................30 附 錄 ................................................31 參考文獻 .............................................33

    參考文獻

    Beran, J. (1993). Fitting long-memory models by generalized linear regression, Biometrika, 80, 817-822.

    Bloomfield, P. (1972). An exponential model for the spectrum of a scalar time series, Biometrika, 60, 217-263.

    Brockwell, P.J. and Davis, R.A. (1987). Time series: Theory and Methods (Second Edition), Springer, New York.

    Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes, The Annals of Statistics, 17, 1749-66.

    Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2003). Least angle regression, The Annals of Statistics, 32, 407-499.

    Fu, W.J. (1998). Penalized regressions: the Bridge versus the Lasso, Journal of Computational and Graphical Statistics, 7, 397-416.

    Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series models, Journal of Time Series Analysis, 4, 221-37.

    Hoerl, A.E. , and Kennard, R.W. (1970a). Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55-67.

    Hoerl, A.E. , and Kennard, R.W. (1970b). Ridge regression: applications to nonorthogonal problems, Technometrics, 12, 69-82.

    Hosking, J.R.M. (1981). Fractional differencing.Biometrika, 68, 165-176.

    Hurvich, M. and Brodsky, J. (2001). Broadband semiparametric estimation of the memory parameter of a long-memory time series using fractional exponential models, Journal of Time Series Analysis, 22, 221-249.

    Hurvich, M. (2002). Multistep forecasting of long memory series using fractional exponential models, International Journal of Forecasting, 18, 167-179.

    Janacek, G. J. (1982). Determining the degree of differencing for time series via the log spectrum, Journal of Time Series Analysis, 3, 177-83.

    Lindley, D.V. (1968). The choice of variables in multiple regression, Journal of the Royal Statistical Society B, 30, 31-66.

    Moulines, E. and Soulier, P. (2000). Data driven order selection for projection estimator of the spectral density of time series with long range dependence, Journal of Time Series Analysis, 21, 193-218.

    Osborne M.R., Brett Presnell and Berwin. A (2000). On the lasso and its dual, Journal of Computational and Graphical Statistics, 9, 2, 319-337.

    Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal Royal Statistical Society. B, 58, 1, 267-288.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE