簡易檢索 / 詳目顯示

研究生: 蔡敦淇
Tsai, Tun-Chi
論文名稱: 無人機群之姿態估計和路徑規劃演算法的性能比較
Performance Comparison of Pose Estimation and Path Planning Algorithms for Drone Swarms
指導教授: 徐正炘
Hsu, Cheng-Hsin
口試委員: 李哲榮
Lee, Che-Rung
黃俊穎
Huang, Chun-Ying
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 64
中文關鍵詞: 無人機位姿估測路徑規劃無人機群無人機通訊
外文關鍵詞: Drone, Pose Estimation, Path Planning, Drone Swarm, Drone Communication
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從頭開始搭建一台能自主飛行並避障的無人機並不是一件容易的事。儘管在自主定位導航以及路徑規劃等方面的研究已盛行許久,但文獻中尚未有大量討論如何將不同功能的演算法整合並實現於真實環境中。而這些研究通常也假設其演算法執行於網路環境狀態穩定的情況下。在本文中,我們首先解析了搭建一台能自主飛行的無人機需要具備哪些軟硬體模組,接著我們調查對於各項模組在當今最優秀的演算法分別有哪些。同時我們調查國際上對於無人機通訊的標準規範,了解若要在真實環境實行無人機群,飛機自身需要廣播哪些必要資訊,以便無人機群在彼此溝通的情況下也能維持空中交管系統的秩序。接著我們透過模擬不同網路參數環境下的路徑規劃結果來評估路徑規劃演算法在不同網路環境下的影響。最後我們從無人機的骨架開始,結合飛控板、小型機載電腦、相機與其他感測器等,搭建出能在室內環境自主飛行與避障的無人機,同時能將其規劃的路徑透過UDP封包傳遞給其他無人機作為群體避障路徑規劃。


    Building a drone from scratch that can fly autonomously and avoid obstacles is not an easy task. Although research on autonomous localization, navigation and path planning has long been popular, there is little discussion in the literature on how to integrate algorithms with different functions and implement them in real-world settings. These studies usually assume that their algorithms are executed in a stable network environment. In this thesis, we first analyze what software and hardware modules are needed to build a drone that can fly autonomously. Then we see what the best algorithm is for each module today. At the same time, we studied the international standards for drone communication to understand what necessary messages the drone itself needs to broadcast. This enables a group of drones to communicate with each other while maintaining order within the air traffic control system. Then, we evaluate the impact of path planning algorithms in different network environments by simulating the path planning results in different network parameter environments. Finally, we started with the skeleton of the drone and combined it with the flight control board, small on-board computer, cameras and other sensors to create drones that can fly autonomously in indoor environments and avoid obstacles. At the same time, the planned path can be passed to other drones through UDP packets for group obstacle avoidance path planning.

    Acknowledgments 致謝 Abstract 中文摘要 Chapter 1 Introduction ----------------- 1 Chapter 2 Background ------------------- 7 Chapter 3 Related Work ---------------- 16 Chapter 4 Cooperative Drone Swarms ---- 21 Chapter 5 Pose Estimation Algorithms -- 31 Chapter 6 Path Planning Algorithms ---- 37 Chapter 7 Experiments ----------------- 42 Chapter 8 Implementations ------------- 49 Chapter 9 Conclusion and Future Work -- 55 Bibliography -------------------------- 58

    [1] M. Abdelkader, S. Guler, H. Jaleel, and J. S. Shamma. Aerial swarms: Recent applications and challenges. Springer Current robotics reports, 2:309–320, 2021.
    [2] S. Ahirwar, R. Swarnkar, S. Bhukya, and G. Namwade. Application of drone in agriculture. International Journal of Current Microbiology and Applied Sciences, 8(1):2500–2505, 2019.
    [3] M. M. Azari, S. Solanki, S. Chatzinotas, and M. Bennis. THz-empowered UAVs in 6g: Opportunities, challenges, and trade-offs. IEEE Communications Magazine, 60(5):24–30, 2022.
    [4] S. Badrloo, M. Varshosaz, S. Pirasteh, and J. Li. A novel region-based expansion rate obstacle detection method for MAVs using a fisheye camera. International Journal of Applied Earth Observation and Geoinformation, 108:102739, 2022.
    [5] S. Baidya, Z. Shaikh, and M. Levorato. FlyNetSim: An open source synchronized UAV network simulator based on ns-3 and ardupilot. In Proc. of ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pages 37–45, 2018.
    [6] G. Brunner, B. Szebedy, S. Tanner, and R. Wattenhofer. The urban last mile problem: Autonomous drone delivery to your balcony. In Proc. of IEEE Conference on unmanned aircraft systems (ICUAS), pages 1005–1012, 2019.
    [7] W. Budiharto, A. Chowanda, A. A. S. Gunawan, E. Irwansyah, and J. S. Suroso. A review and progress of research on autonomous drone in agriculture, delivering items and geographical information systems (GIS). In Proc. of IEEE 2nd world symposium on communication engineering (WSCE), pages 205–209, 2019.
    [8] W. Chen, J. Liu, H. Guo, and N. Kato. Toward robust and intelligent drone swarm: Challenges and future directions. IEEE Network, 34(4):278–283, 2020.
    [9] A. R. Cheraghi, S. Shahzad, and K. Graffi. Past, present, and future of swarm robotics. In Proc. of Springer Conference on Intelligent Systems and Applications (IntelliSys), pages 190–233, 2022.
    [10] G. C. Cris¸an and E. Nechita. On a cooperative truck-and-drone delivery system. Procedia Computer Science, 159:38–47, 2019.
    [11] Z. Cui and Y. Wang. UAV path planning based on multi-layer reinforcement learning technique. IEEE Access, 9:59486–59497, 2021.
    [12] T. De Swarte, O. Boufous, and P. Escalle. Artificial intelligence, ethics and human values: the cases of military drones and companion robots. Artificial Life and Robotics, 24:291–296, 2019.
    [13] E. Debie, K. Kasmarik, and M. Garratt. Swarm robotics: A survey from a multitasking perspective. ACM Computing Surveys, 56(2):1–38, 2023.
    [14] T. Elmokadem and A. V. Savkin. Towards fully autonomous UAVs: A survey. Sensors, 21(18):6223, 2021.
    [15] J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular SLAM. In Proc. of Springer Conference on Computer Vision, pages 834–849, 2014.
    [16] M. Fernandez-Cortizas, M. Molina, P. Arias-Perez, R. Perez-Segui, D. Perez-Saura, and P. Campoy. Aerostack2: A software framework for developing multi-robot aerial systems. arXiv preprint arXiv:2303.18237, 2023.
    [17] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. Rotors - a modular gazebo mav simulator framework. Robot Operating System (ROS) The Complete Reference, 1:595–625, 2016.
    [18] G. Geraci, A. Garcia-Rodriguez, M. M. Azari, A. Lozano, M. Mezzavilla, S. Chatzinotas, Y. Chen, S. Rangan, and M. Di Renzo. What will the future of UAV cellular communications be? A flight from 5G to 6G. IEEE communications surveys & tutorials, 24(3):1304–1335, 2022.
    [19] P. Ghassemi, D. DePauw, and S. Chowdhury. Decentralized dynamic task allocation in swarm robotic systems for disaster response. In Proc. of IEEE Symposium on Multi-robot and Multi-agent Systems (MRS), pages 83–85, 2019.
    [20] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard. A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.
    [21] P. Hall, J. Diller, A. Moon, and Q. Han. DroNS-3: Framework for realistic drone and networking simulators. In Proceedings of the Ninth Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, pages 39–44, 2023.
    [22] V. Hassija, V. Chamola, A. Agrawal, A. Goyal, N. C. Luong, D. Niyato, F. R. Yu, and M. Guizani. Fast, reliable, and secure drone communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 23(4):2802–2832, 2021.
    [23] C. Henkel and M. Toussaint. Optimized directed roadmap graph for multi-agent path finding using stochastic gradient descent. In Proc. of ACM Symposium on Applied Computing (SAC), pages 776–783, 2020.
    [24] G. Huang. Visual-inertial navigation: A concise review. In Proc. of IEEE Conference on Robotics and Automation (ICRA), pages 9572–9582, 2019.
    [25] Q. Huang, Z. Sheng, Y. Fang, and J. Li. A simulated annealing-particle swarm optimization algorithm for UAV multi-target path planning. In Proc. of IEEE Conference on Consumer Electronics and Computer Engineering (ICCECE), pages 906–910, 2022.
    [26] X. Huang, Y. Liu, L. Huang, S. Stikbakke, and E. Onstein. BIM-supported drone path planning for building exterior surface inspection. Computers in Industry, 153:104019, 2023.
    [27] Z. Jian, S. Zhang, S. Chen, Z. Nan, and N. Zheng. A global-local coupling two-stage path planning method for mobile robots. IEEE Robotics and Automation Letters, 6(3):5349–5356, 2021.
    [28] V. R. Kumar, C. Eising, C. Witt, and S. Yogamani. Surround-view fisheye camera perception for automated driving: Overview, survey & challenges. IEEE Transactions on Intelligent Transportation Systems, 24(4):3638–3659, 2023.
    [29] M. Labbe and F. Michaud. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of field robotics, 36(2):416–446, 2019.
    [30] H. Li, W. Liu, C. Yang, W. Wang, T. Qie, and C. Xiang. An optimization-based path planning approach for autonomous vehicles using the DynEFWA-artificial potential field. IEEE Transactions on Intelligent Vehicles, 7(2):263–272, 2021.
    [31] F. Liu, T.-Y. Fan, C. Grant, C.-H. Hsu, and N. Venkatasubramanian. DragonFly: Drone-assisted High-Rise monitoring for fire safety. In Proc. of IEEE Symposium on Reliable Distributed Systems (SRDS), pages 331–342, 2021.
    [32] A. Macario Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel. A comprehensive survey of visual SLAM algorithms. Robotics, 11(1):24, 2022.
    [33] B. Madani and M. Ndiaye. Hybrid truck-drone delivery systems: A systematic literature review. IEEE Access, 10:92854–92878, 2022.
    [34] B. Mishra, D. Garg, P. Narang, and V. Mishra. Drone-surveillance for search and rescue in natural disaster. Computer Communications, 156:1–10, 2020.
    [35] D. Mitridis, S. Kapsalis, D. Terzis, and P. Panagiotou. An evaluation of fixed-wing unmanned aerial vehicle trends and correlations with respect to NATO classification, region, EIS date and operational specifications. Aerospace, 10(4):382, 2023.
    [36] U. R. Mogili and B. Deepak. Review on application of drone systems in precision agriculture. Procedia computer science, 133:502–509, 2018.
    [37] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier, K. Sun, A. Zhu, J. Delmerico, et al. Fast, autonomous flight in GPS-denied and cluttered environments. Journal of Field Robotics, 35(1):101–120, 2018.
    [38] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys and Tutorials, 21(3):2334–2360, 2019.
    [39] R. Mur-Artal and J. D. Tardos. Orb-slam2: An open-source slam system for monocular, stereo, and RGB-D cameras. IEEE transactions on robotics, 33(5):1255–1262, 2017.
    [40] M. V. K. Myjak and P. Ranganathan. Unmanned aerial system (UAS) swarm design, flight patterns, communication type, applications, and recommendations. In Proc. of IEEE Conference on Electro Information Technology (eIT), pages 586–594, 2022.
    [41] N. Ngoenriang, S. Nutanong, and D. Niyato. Joint task allocation and data delivery framework for unmanned aerial vehicles in aerial plant inspection. In Proc. of IEEE Conference on Vehicular Technology (VTC), pages 1–5, 2019.
    [42] R. Patel, E. Rudnick-Cohen, S. Azarm, M. Otte, H. Xu, and J. W. Herrmann. Decentralized task allocation in multi-agent systems using a decentralized genetic algorithm. In Proc. of IEEE Conference on Robotics and Automation (ICRA), pages 3770–3776, 2020.
    [43] A. Petrovski, M. Radovanovic, and A. Behli ´ c. Application of drones with artificial intelligence for military purposes. In 10th International Scientific Conference od Defensive Technologies (OTEH), pages 92–100, 2022.
    [44] L. Pichierri, A. Testa, and G. Notarstefano. Crazychoir: Flying swarms of crazyflie quadrotors in ROS 2. IEEE Robotics and Automation Letters, 8(8):4713–4720, 2023.
    [45] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and J. A. Castellanos. A survey on active simultaneous localization and mapping: State of the art and new frontiers. IEEE Transactions on Robotics, 39(3):1686–1705, 2023.
    [46] T. Qin, J. Pan, S. Cao, and S. Shen. A general optimization-based framework for local odometry estimation with multiple sensors. arXiv preprint arXiv:1901.03638, 2019.
    [47] T. Qiuyun, S. Hongyan, G. Hengwei, and W. Ping. Improved particle swarm optimization algorithm for AGV path planning. IEEE Access, 9:33522–33531, 2021.
    [48] L. Quan, L. Yin, C. Xu, and F. Gao. Distributed swarm trajectory optimization for formation flight in dense environments. In Proc. of IEEE Conference on Robotics and Automation (ICRA), pages 4979–4985, 2022.
    [49] L. Quan, Z. Zhang, X. Zhong, C. Xu, and F. Gao. EVA-planner: Environmental adaptive quadrotor planning. In Proc. of IEEE Conference on Robotics and Automation (ICRA), pages 398–404, 2021.
    [50] R. Rafifandi, D. L. Asri, E. Ekawati, and E. M. Budi. Leader–follower formation control of two quadrotor UAVs. Springer SN Applied Sciences, 1:1–12, 2019.
    [51] A. Rejeb, A. Abdollahi, K. Rejeb, and H. Treiblmaier. Drones in agriculture: A review and bibliometric analysis. Computers and electronics in agriculture, 198:107017, 2022.
    [52] L. Ruetten, P. A. Regis, D. Feil-Seifer, and S. Sengupta. Area-optimized UAV swarm network for search and rescue operations. In Proc. of IEEE 10th annual computing and communication workshop and conference (CCWC), pages 0613–0618, 2020.
    [53] I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna, M. Popovic, J. Nieto, and R. Siegwart. Build your own visual-inertial drone: A cost-effective and open-source autonomous drone. IEEE Robotics & Automation Magazine, 25(1):89–103, 2017.
    [54] M. M. Saad, M. T. R. Khan, S. H. A. Shah, and D. Kim. Advancements in vehicular communication technologies: C-V2X and NR-V2X comparison. IEEE Communications Magazine, 59(8):107–113, 2021.
    [55] D. C. Schedl, I. Kurmi, and O. Bimber. An autonomous drone for search and rescue in forests using airborne optical sectioning. Science Robotics, 6(55):eabg1188, 2021.
    [56] A. Sehrawat, T. A. Choudhury, and G. Raj. Surveillance drone for disaster management and military security. In Proc. of IEEE Conference on Computing, Communication and Automation (ICCCA), pages 470–475, 2017.
    [57] J. Seo, L. Duque, and J. Wacker. Drone-enabled bridge inspection methodology and application. Automation in construction, 94:112–126, 2018.
    [58] M. A. Shaheen, H. H. Amer, and N. A. Ali. Robust Air-to-Air channel model for swarms of drones in search and rescue missions. IEEE Access, 11:68890–68896, 2023.
    [59] S.-M. Tang, C.-H. Hsu, Z. Tian, and X. Su. An aerodynamic, computer vision, and network simulator for networked drone applications. In Proc. of ACM Conference on Mobile Computing and Networking (MobiCom), pages 831–833, 2021.
    [60] R. Tariq, M. Rahim, N. Aslam, N. Bawany, and U. Faseeha. DronAID : A smart human detection drone for rescue. In Proc. of IEEE Conference on Smart Cities: Improving Quality of Life Using ICT and IoT (HONET-ICT), pages 33–37, 2018.
    [61] B. Wang, Z. Liu, Q. Li, and A. Prorok. Mobile robot path planning in dynamic environments through globally guided reinforcement learning. IEEE Robotics and Automation Letters, 5(4):6932–6939, 2020.
    [62] D. Wang, P. Hu, J. Du, P. Zhou, T. Deng, and M. Hu. Routing and scheduling for hybrid truck-drone collaborative parcel delivery with independent and truck-carried drones. IEEE Internet of Things Journal, 6(6):10483–10495, 2019.
    [63] K. Xiao, S. Tan, G. Wang, X. An, X. Wang, and X. Wang. XTDrone: A customizable multi-rotor UAVs simulation platform. In Proc. of IEEE Conference on Robotics and Automation Sciences (ICRAS), pages 55–61, 2020.
    [64] Z. Xiaoning. Analysis of military application of UAV swarm technology. In Proc. of IEEE Conference on Unmanned Systems (ICUS), pages 1200–1204, 2020.
    [65] C. Yang, X. Liu, H. Zhou, Y. Ke, and J. See. Towards accurate image stitching for drone-based wind turbine blade inspection. Renewable Energy, 203:267–279, 2023.
    [66] J. Yao and N. Ansari. Online task allocation and flying control in fog-aided internet of drones. IEEE Transactions on Vehicular Technology, 69(5):5562–5569, 2020.
    [67] Q. Yao, Z. Zheng, L. Qi, H. Yuan, X. Guo, M. Zhao, Z. Liu, and T. Yang. Path planning method with improved artificial potential field—a reinforcement learning perspective. IEEE Access, 8:135513–135523, 2020.
    [68] H. D. Yoo and S. M. Chankov. Drone-delivery using autonomous mobility: An innovative approach to future last-mile delivery problems. In Proc. of IEEE Conference on industrial engineering and engineering management (IEEM), pages 1216–1220, 2018.
    [69] Z. Yu, Z. Si, X. Li, D. Wang, and H. Song. A novel hybrid particle swarm optimization algorithm for path planning of UAVs. IEEE Internet of Things Journal, 9(22):22547–22558, 2022.
    [70] M. Zhang and X. Li. Drone-enabled Internet-of-Things relay for environmental monitoring in remote areas without public networks. IEEE Internet of Things Journal, 7(8):7648–7662, 2020.
    [71] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao. Ego-planner: An ESDF-free gradient-based local planner for quadrotors. IEEE Robotics and Automation Letters, 6(2):478–485, 2020.
    [72] X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu, et al. Swarm of micro flying robots in the wild. Science Robotics, 7(66):eabm5954, 2022.
    [73] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao. Ego-swarm: A fully autonomous and decentralized quadrotor swarm system in cluttered environments. In Proc. of IEEE Conference on Robotics and Automation (ICRA), pages 4101–4107, 2021.

    QR CODE