研究生: |
呂臨佑 Lu, Lin-Yu |
---|---|
論文名稱: |
以開關式磁阻發電機為主具隔離型轉換器與插入式充電器直流微電網之開發 DEVELOPMENT OF A SWITCHED-RELUCTANCE GENERATOR BASED DC MICRO-GRID WITH ISOLATED CONVERTERS AND PLUG-IN CHARGER |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
徐國鎧
Shyu, Kuo-Kai 江炫樟 Chiang, Hsuang-Chang 趙貴祥 Chao, Kuei-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 開關式磁阻發電機 、風力發電機 、微電網 、隔離型轉換器 、電流注入推挽式轉換器 、雙向轉換器 、電壓控制 、強健控制 、換相位移 、蓄電池儲能系統 、鉛酸電池 、切換式整流器 、功因矯正 |
外文關鍵詞: | Switched reluctance generator, wind generator, micro-grid, isolated converter, current-fed DC/DC converter, bidirectional converter, voltage control, robust control, commutation shift, battery energy storage system, lead-acid battery, switch-mode rectifier, power factor correction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發以風力驅動開關式磁阻發電機為再生發電源之實驗
型直流微電網。首先適當地設計開關式磁阻發電機之電力電路及控制迴路,以降低換相及開關切換所造成之直流鏈電壓紋波,並應用一簡易強健電壓控制器以在發電機轉速變動下仍可獲得良好之電壓調控特性。接著開發一動態換相位移控制器,進一步強化操控性能。
建立了具良好調控輸出電壓之開關式磁阻發電機後,其直流輸出
(48V)經一具電氣隔離之電流注入推挽式直流-直流轉換器升壓以建立一共同直流匯流排(400V)。其中,轉換器之電力電路及控制機構亦妥適設計以獲得調節良好之直流匯流排電壓。此外,亦建立一個三相三線式變頻器做為所建構直流微電網之測試負載,並應用簡易強健電壓控制獲得追控良好之輸出交流電壓波形。
為提供變動再生發電源之輔助能源,本論文建構一鉛酸蓄電池儲能
系統,蓄電池經由所建之具隔離雙向電流注入推挽式/全橋式直流-直流轉換器介接至共同匯流排,經實驗評估其具良好之放電及充電控制性能。
此外,提出一以電流注入推挽切換式整流器為主之輔助充電器,以便於開關式磁阻發電機故障時能由傳統電網對蓄電池進行輔助充電。所建構之電流注入推挽切換式整流器採用開關磁阻發電機後接介面轉換器之內置元件,僅需外接一橋式二極體整流器。透過適當之設計與控制,亦獲得良好之充電特性與入電品質。
This thesis presents the development of an experimental common DC-bus micro-grid system with a wind-driven switched-reluctance generator (SRG) as distributed generation source. In the establishment of SRG system, its power circuit and control scheme are first properly designed considering the alleviation of DC-link voltage ripples effects caused by commutation and switching. Moreover, the simple robust control is applied to yield improved DC output voltage regulation characteristics under varying prime mover driving speed. Then the operating performance is further enhanced via commutation shift approach.
Having established the well-regulated SRG system, its output voltage (48VDC) is boosted by an isolated current-fed push-pull (CFPP) interface DC/DC to establish the
common DC bus (400VDC). Similarly, the well-regulated DC bus voltage is achieved by the properly designed schematic and control scheme. As to the test load of micro-grid, a
three-phase three-wire load inverter is established. Good AC output waveforms and regulation performance are obtained by applying the developed simple robust control approach.
To provide the energy support for the micro-grid under generating fluctuation, a lead-acid battery energy storage system with bidirectional CFPP isolated interface DC/DC
converter is developed. Good charging and discharging control performances are evaluated experimentally. In addition, a CFPP based switch-mode rectifier (SMR) is established and employed as an auxiliary charger. It can let the battery be charged from utility grid as the SRG fault is occurred. This SMR is formed using the embedded components of the SRG interfaced boost CFPP DC/DC converter, only an external diode bridge is needed. Through
the proposed proper control, good charging characteristics and line drawn power quality are achieved.
A. Switched-Reluctance Machines and Switched-Reluctance Generators
[1] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New
Jersey: John Wiley & Sons, Inc., 1997.
[2] T. J. E. Miller, Switched Reluctance Motors and Their Control, Oxford: Clarendon
Press, 1993.
[3] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis,
Design, and Applications, New York: CRC Press, 2001.
[4] A. W. F. V. Silveira, D. A. Andrade, A. V. S. Fleury, L. C. Gomes and C. A.
Bissochi, “Control of the SRM operating as a motor/generator,” in Proc. IEEE ISIE,
2009, pp. 1558-1563.
[5] K. Vijayakumar, R. Karthikeyan, S. Paramasivam , R. Arumugam and K. N. Srinivas,
“Switched reluctance motor modeling, design, simulation, and analysis: a
comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
[6] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of
singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE
Conf. Elect. Mach. and Drives, 1997, pp. 361-365.
[7] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection
issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol.,
vol. 55, no. 6, pp. 1756-1764, 2006.
[8] M. Krishnamurthy, C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani and B. Fahimi,
“Making the case for applications of switched reluctance motor technology in
automotive products,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 659-675,
2006.
[9] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance
motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,”
IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3125, 2009.
[10] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based
starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1,
pp. 116-124, 2004.
[11] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp.
48-56, 2009.
[12] T. G. Wiegele, “Micro-turbo-generator design and fabrication: a preliminary study,”
in Proc. IEEE IECEC, 1996, vol. 4, pp. 2308-2313.
[13] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power
smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans.
Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
[14] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Control of a
switched reluctance generator for variable-speed wind energy applications,” IEEE
Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
[15] N. Radimov, N. Ben-Hail and R. Rabinovici, “Switched reluctance machines as
three-phase AC autonomous generator,” IEEE Trans. Magn., vol. 42, no. 11, pp.
3760-3764, 2006.
[16] R. Karthikeyan, K. Vijayakumar and R. Arumugam, “Study on switched reluctance
generator for rural electrification,” in Proc. IEEE ICIIS, 2009, pp. 472-476.
[17] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative
evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[18] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance
drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[19] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched
reluctance motors wherein some windings operate on recovered energy,” IEEE Trans.
Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[20] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for
switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp.
912-921, 1997.
[21] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter
for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp.
1228-1236, 2000.
[22] A. Takahashi, H. Goto, K. Nakamura, T. Watanabe and O. Ichinokura,
“Characteristics of 8/6 switched reluctance generator excited by suppression resistor
converter,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3458-3460, 2006.
[23] N. K. Singh, J. E. Fletcher, S. J. Finney, D. M. Grant and B. W. Williams, “A novel
switched reluctance generator inverter topology for AC power generation,” in Proc. IET PEMD, 2006, pp. 32-35.
[24] D. B. Wicklund and D. S. Zinger, “Voltage feedback signal conditioning in switched
reluctance generation systems,” in Proc. IEEE APEC, 2000, vol. 1, pp. 376-380.
[25] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme
for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp.
445-454, 2008.
[26] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind.
Electron., vol. 49, no. 1, pp. 3-14, 2002.
[27] M. Menne, R. B. Inderka and R. W. De Doncker, “Critical states in generating mode
of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550.
[28] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for
switched reluctance-generators,” IEEE Trans. Energy Convers., vol. 17, no. 1, 2002.
[29] P. Chancharoensook and M. F. Rahman, “Control of a four-phase switched
reluctance generator: experimental investigations,” in Proc. IEEE IEMDC, 2003, vol.
2, pp. 842-848.
[30] E. Mese, Y. Sozer, J. M. Kokernak and D. A. Torrey, “Optimal excitation of a high
speed switched reluctance generator,” in Proc. IEEE APEC, 2000, vol. 1, pp.
362-368.
[31] H. Chen and Z. Shao, “Turn-on angle control for switched reluctance wind power
generator system,” in Proc. IEEE IECON, 2004, pp. 2367-2370.
[32] I. Kioskeridis and C. Mademlis, “Optimal efficiency control of switched reluctance
generators,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1062-1072, 2006.
[33] Y. Sozer and D. A. Torrey, “Closed loop control of excitation parameters for high
speed switched-reluctance generators,” IEEE Trans. Power Electron., vol.19, no. 2,
pp. 355-362, 2004.
[34] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled
switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp.
556-565, 2005.
[35] P. Asadi, M. Ehsani and B. Fahimi, “Design and control characterization of switched
reluctance generator for maximum output power,” in Proc. IEEE APEC, 2006, pp.
1639-1644.
[36] A. Fleury, D. Andrade, A. W. F. V. Silveira, F. S. L. Ribeiro, A. Coelho and L. G.
Cabral, “Dependence of the switched reluctance generator output on the speed and the excitation voltage,” in Proc. IEEE IECON, 2008, pp. 1101-1105.
[37] E. Echenique, J. Dixon, R. Cardenas and R. Pena, “Sensorless control for a switched
reluctance wind generator, based on current slopes and neural networks,” IEEE
Trans. Ind. Electron., vol. 56, no. 3, pp. 817-825, 2009.
B. Micro-Grid Systems
[38] H. Hakigano, Y. Miura and T. Ise, “Configuration and control of a DC microgrid for
residential houses,” in Proc. IEEE T&D Asia, 2009, pp. 1-4.
[39] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power
Energy, vol. 5, no. 4, pp. 78-94, 2007.
[40] P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE CPE, 2007,
pp. 1-6.
[41] S. Chakraborty and M. G. Simoes, “Experimental evaluation of active filtering in a
single-phase high-frequency AC microgrid,” IEEE Trans. Energy Convers., vol. 24,
no. 3, pp. 673-682, 2009.
[42] R. H. Lasseter, “MicroGrids,” in Proc. IEEE PESW, 2002, vol. 1, pp. 305-308.
[43] S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON,
2007, pp. 635-642.
[44] R. H. Lasseter, J. H. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp, E.
Linton, H. Hurtado and J. Roy, “CERTS microgrid laboratory test bed,” IEEE Trans.
Power Del., vol. 26, no. 1, pp. 325-332, 2011.
[45] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC Micro-grid for super high quality
distribution—system configuration and control of distributed generations and energy
storage devices—,” in Proc. IEEE PESC, 2006, pp. 1-7.
[46] H. Kakigano, M. Nomura and T. Ise, “Loss evaluation of DC distribution for
residential houses compared with AC system,” in Proc. IEEE IPEC, 2010, pp.
480-486.
[47] S. J. Ahn, J. W. Park, I. Y. Chung, S. I. Moon, S. H. Kang and S. R. Nam,
“Power-sharing method of multiple distributed generators considering control modes
and configurations of a microgrid,” IEEE Trans. Power Del., vol. 25, no. 3, pp.
2007-2016, 2010.
[48] Díaz, C. González-Morán, J. Gómez-Aleixandre and A. Diez, “Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 489-496, 2010.
[49] Majumder, B. Chaudhuri, A. Ghosh, R. Majumder, G. Ledwich and F. Zare,
“Improvement of stability and load sharing in an autonomous microgrid using
supplementary droop control loop,” IEEE Trans. Power Syst., vol. 25, no. 2, pp.
796-808, 2010.
[50] Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti and F. Zare, “Droop control of
converter-interfaced microsources in rural distributed generation,” IEEE Trans.
Power Del., vol. 25, no. 4, pp. 2768-2778, 2010.
[51] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super
high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp.
3066-3075, 2010.
[52] Y. C. Chang, C. H. Cheng, L.Y. Lu and C. M. Liaw, “An experimental switchedreluctance
generator based distributed power system,” in Proc. IEEE ICEM, 2010,
pp.1-6.
[53] T. S. Weerakoon, S. A. Kurera and A. Arulampalam, “Voltage source converters to
improve the operation of the micro-grid,” in Proc. IEEE ICIIS, 2008, pp. 1-6.
[54] J. A. Baroudi, V. Dinavahi and A. M. Knight, “A review of power converter
topologies for wind generators,” in Proc. IEEE IEMDC, 2005, pp. 458-465.
[55] H. Polinder, F. F. A. van der Pijl, G. J. de Vilder and P. J. Tavner, “Comparison of
direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy
Convers., vol. 21, no. 3, pp. 725-733, 2006.
[56] G. L. Johnson. (2006, Oct. 10). Wind Energy Systems [Online]. Available: http://
www .eece.ksu.edu/~gjohnson/Windbook.pdf
C. Bidirectional Interface DC-DC Converters and Switch-Mode
Rectifiers
[57] P. Das, S. A. Mousavi and G. Moschopoulos, “Analysis and design of a nonisolated
bidirectional ZVS-PWM DC-DC converter with coupled inductors,” IEEE Trans.
Power Electron., vol. 25, no. 10, pp. 2630-2641, 2010.
[58] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional
isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power
Electron., 2011, to be published.
[59] C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron.,
vol. 23, no. 5, pp. 2443-2453, 2008.
[60] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept
for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24,
no. 6, pp. 1437-1443, 2009.
[61] Z. Qian, O. Abdel-Rahman and I. Batarseh, “An integrated four-port DC/DC
converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25,
no. 7, pp. 1877-1887, 2010.
[62] S. Jalbrzykowski, A. Bogdan and T. Citko, “A dual full bridge resonant class-e
bidirectional DC-DC converter,” IEEE Trans. Ind. Electron., 2011, to be published.
[63] S. Zhang, O. Thomsen and M. Andersen, “Optimal design of a push-pull-forward
half-bridge (PPFHB) bidirectional DC-DC converter with variable input voltage”
IEEE Trans. Ind. Electron., 2011, to be published.
[64] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based
bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE,
2009, pp. 1-10.
[65] D. Xu, C. Zhao and H. Fan, “A PWM plus phase-shift control bidirectional DC-DC
converter,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 666-675, 2004.
[66] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters,
Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[67] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C.
Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative,
efficient current-fed push-pull grid connectable inverter for distributed generation
systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
[68] J. M. Kwon, E. H. Kim, B. H. Kwon and K. H. Nam, “High-efficiency fuel cell
power conditioning system with input current ripple reduction,” IEEE Trans. Ind.
Electron., vol. 56, no. 3, pp. 826-834, 2009.
[69] W. C. P. de Aragao Filho and I. Barbi, “A comparison between two current-fed
push-pull DC-DC converters-analysis, design and experimentation,” in Proc. IEEE
INTELEC, 1996, pp. 313-320.
[70] A. L. Rabello, C. A. Marcio, G. C. D. Sousa and J. L. F. Vieira, “A fully protected
push-pull current-fed DC-DC converter,” in Proc. IEEE IECON, 1997, vol. 2, pp.
587-592.
[71] D. C. Martins and R. Demonti, “Interconnection of a photovoltaic panels array to a
single-phase utility line from a static conversion system,” in Proc. IEEE PESC, 2000,
vol. 3, pp. 1207-1211.
[72] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull
DC-DD Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp.
203-207.
[73] F. J. Nome and I. Barbi, “A ZVS clamping mode-current-fed push-pull DC-DC
converter,” in Proc. IEEE ISIE, 2009, vol. 2, pp. 617-621.
[74] S. Ben-Yaakov and M. M. Peretz, “A self-adjusting sinusoidal power source suitable
for driving capacitive loads,” IEEE Trans. Power Electron., vol. 21, no. 4, pp.
890-898, 2006.
[75] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.,
Norwell Massachusetts: Kluwer Academic Publishers, 2001.
[76] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor
correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755,
2003.
[77] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” in Proc.
IEEE PEDS, 1996, vol. 2, pp. 637-643.
[78] B. Singh and S. Singh, “Single-phase power factor controller topologies for
permanent magnet brushless DC motor drives,” IET Power Electron., vol. 3, no. 2,
pp. 147-175, 2010.
[79] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust
ripple compensation and current waveform controls,” IEEE Trans. Power Electron.,
vol. 19, no. 2, pp. 560-566, 2004.
[80] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering
nonlinear behavior,” in Proc. IET Elect. Power Appl., 2007, vol. 1, no. 3, pp.
316-328.
[81] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC
boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[82] P. Das, S. Li and G. Moschopoulos, “An improved AC-DC single-stage full-bridge
converter with reduced DC bus voltage,” IEEE Trans. Ind. Electron., vol. 56, no. 12,
pp. 4882-4893, 2009.
[83] E. X. Yang, Y. Jiang, G. Hua and F. C. Lee, “Isolated boost circuit for power factor correction,” in Proc. IEEE APEC, 1993, pp. 196-203.
[84] Z. Nie, M. Ferdowsi and A. Emadi, “Boost integrated push-pull rectifier with power
factor correction and output voltage regulation using a new digital control,” in Proc.
IEEE INTELEC, 2004, pp. 59-64.
[85] S. L. Patil and A. K. Agarwala, “Push pull boost converter with low loss switching,”
in Proc. IEEE ICIT, 2008, pp. 1-6.
[86] L. Sangwon and C. Sewan, “A three-phase current-fed push-pull DC-DC converter
with active clamp for fuel cell applications,” in Proc. IEEE APEC, 2010, pp.
1934-1941.
D. Inverters and PWM Switching Methods
[87] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters:
Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
[88] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall,
2001.
[89] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected
inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
[90] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of
single-phase inverters for small distributed power generators: an overview,” IEEE
Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[91] T. Shimizu and S. Suzuki, “A single-phase grid-connected inverter with power
decoupling function,” in Proc. IEEE IPEC, 2010, pp. 2918-2923.
[92] A. C. Kyritsis, E. C. Tatakis and N. P. Papanikolaou, “Optimum design of the
current-source flyback inverter for decentralized grid-connected photovoltaic
systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 281-293, 2008.
[93] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated
converter topologies with three different DC link configurations,” IEEE Trans.
Power Electron., vol. 23, no. 3, pp. 1320-1333, 2008.
[94] C. Rodriguez and G. A. J. Amaratunga, “Long-lifetime power inverter for
photovoltaic AC modules,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2593-2601,
2008.
[95] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system
employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 149-158, 2009.
[96] R. A. Mastromauro, M. Liserre and A. Dell'Aquila, “Study of the effects of inductor
nonlinear behavior on the performance of current controllers for single-phase PV
grid converters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2043-2052, 2008.
[97] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Linear current
control scheme with series resonant harmonic compensator for single-phase
grid-connected photovoltaic inverters” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp.
2724-2733, 2008.
[98] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design
guidelines for single-phase grid-connected photovoltaic inverters with damped
resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp.
4492-4500, 2009.
[99] J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no.
5, pp. 410-420, 1992.
[100] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase
voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no.
5, pp. 691-703, 1998.
[101] C. Meza, J. J. Negroni, D. Biel and F. Guinjoan, “Energy-balance modeling and
discrete control for single-phase grid-connected PV central inverters,” IEEE Trans.
Ind. Electron., vol. 55, no. 7, pp. 2734-2743, 2008.
[102] P. Sanchis, A. Ursæa, E. Gubía and L. Marroyo, “Boost DC-AC inverter: a new
control strategy,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 343-353, 2005.
[103] R. A. Mastromauro, M. Liserre, T. Kerekes and A. Dell'Aquila, “A single-phase
voltage-controlled grid-connected photovoltaic system with power quality
conditioner functionality,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4436-4444,
2009.
[104] H. Kim and K. H. Kim, “Filter design for grid connected PV inverters,” in Proc.
IEEE ICSET, 2008, pp.1070-1075.
[105] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter
considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp.
1659-1664.
[106] H. Deng, R. Oruganti and D. Srinivasan, “A simple control method for
high-performance UPS inverters through output-impedance reduction,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 888-898, 2008.
[107] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for
open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp.
683-689, 1999.
[108] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed
PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
[109] Z. Salam, M. Z. Ramli, L. S. Toh and C. L. Nge, “An isolated bidirectional inverter
using high frequency certer-tapped transformer,” in Proc. IEEE PEMD, 2004, pp.
71-75.
[110] P. K. Jain, K. Wen, H. Soin and Y. Xi, “Analysis and design considerations of a load
and line independent zero voltage switching full bridge DC/DC converter topology,”
IEEE Trans. Power Electron., vol. 22, no. 5, pp. 649-657, 2002.
[111] G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge
converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp.
228-235, 2005.
E. Others
[112] Y. C. Chang, Development of a switched-reluctance generator and its application to
the establishment of microgrid system, Ph.D. Dissertation, Dept. Electron. Eng.,
National Tsing Hua Univ., R.O.C., 2010.
[113] T. M. Lin, Design and implementation of a DSP-based switched reluctance motor
drive, M.S. Thesis, Dept. Electron. Eng., National Tsing Hua Univ., R.O.C., 2001.
[114] “Single-chip, DSP-based high performance motor controller ADMC401,” Analog
Devices Inc., U.S.A., 2000.
[115] “ADSP-2100 family user’s manual,” Analog Devices Inc., U.S.A., 1995.
[116] Y. L. Yang, Development and digital control of inverter systems with galvanic
isolation and front-end SMR, M.S. Thesis, Dept. Electron. Eng., National Tsing Hua
Univ., R.O.C., 2008.
[117] A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans.
Power Del., vol. 16, no. 4, pp. 782-790, 2001.