簡易檢索 / 詳目顯示

研究生: 呂臨佑
Lu, Lin-Yu
論文名稱: 以開關式磁阻發電機為主具隔離型轉換器與插入式充電器直流微電網之開發
DEVELOPMENT OF A SWITCHED-RELUCTANCE GENERATOR BASED DC MICRO-GRID WITH ISOLATED CONVERTERS AND PLUG-IN CHARGER
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 徐國鎧
Shyu, Kuo-Kai
江炫樟
Chiang, Hsuang-Chang
趙貴祥
Chao, Kuei-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 128
中文關鍵詞: 開關式磁阻發電機風力發電機微電網隔離型轉換器電流注入推挽式轉換器雙向轉換器電壓控制強健控制換相位移蓄電池儲能系統鉛酸電池切換式整流器功因矯正
外文關鍵詞: Switched reluctance generator, wind generator, micro-grid, isolated converter, current-fed DC/DC converter, bidirectional converter, voltage control, robust control, commutation shift, battery energy storage system, lead-acid battery, switch-mode rectifier, power factor correction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發以風力驅動開關式磁阻發電機為再生發電源之實驗
    型直流微電網。首先適當地設計開關式磁阻發電機之電力電路及控制迴路,以降低換相及開關切換所造成之直流鏈電壓紋波,並應用一簡易強健電壓控制器以在發電機轉速變動下仍可獲得良好之電壓調控特性。接著開發一動態換相位移控制器,進一步強化操控性能。
    建立了具良好調控輸出電壓之開關式磁阻發電機後,其直流輸出
    (48V)經一具電氣隔離之電流注入推挽式直流-直流轉換器升壓以建立一共同直流匯流排(400V)。其中,轉換器之電力電路及控制機構亦妥適設計以獲得調節良好之直流匯流排電壓。此外,亦建立一個三相三線式變頻器做為所建構直流微電網之測試負載,並應用簡易強健電壓控制獲得追控良好之輸出交流電壓波形。
    為提供變動再生發電源之輔助能源,本論文建構一鉛酸蓄電池儲能
    系統,蓄電池經由所建之具隔離雙向電流注入推挽式/全橋式直流-直流轉換器介接至共同匯流排,經實驗評估其具良好之放電及充電控制性能。
    此外,提出一以電流注入推挽切換式整流器為主之輔助充電器,以便於開關式磁阻發電機故障時能由傳統電網對蓄電池進行輔助充電。所建構之電流注入推挽切換式整流器採用開關磁阻發電機後接介面轉換器之內置元件,僅需外接一橋式二極體整流器。透過適當之設計與控制,亦獲得良好之充電特性與入電品質。


    This thesis presents the development of an experimental common DC-bus micro-grid system with a wind-driven switched-reluctance generator (SRG) as distributed generation source. In the establishment of SRG system, its power circuit and control scheme are first properly designed considering the alleviation of DC-link voltage ripples effects caused by commutation and switching. Moreover, the simple robust control is applied to yield improved DC output voltage regulation characteristics under varying prime mover driving speed. Then the operating performance is further enhanced via commutation shift approach.
    Having established the well-regulated SRG system, its output voltage (48VDC) is boosted by an isolated current-fed push-pull (CFPP) interface DC/DC to establish the
    common DC bus (400VDC). Similarly, the well-regulated DC bus voltage is achieved by the properly designed schematic and control scheme. As to the test load of micro-grid, a
    three-phase three-wire load inverter is established. Good AC output waveforms and regulation performance are obtained by applying the developed simple robust control approach.
    To provide the energy support for the micro-grid under generating fluctuation, a lead-acid battery energy storage system with bidirectional CFPP isolated interface DC/DC
    converter is developed. Good charging and discharging control performances are evaluated experimentally. In addition, a CFPP based switch-mode rectifier (SMR) is established and employed as an auxiliary charger. It can let the battery be charged from utility grid as the SRG fault is occurred. This SMR is formed using the embedded components of the SRG interfaced boost CFPP DC/DC converter, only an external diode bridge is needed. Through
    the proposed proper control, good charging characteristics and line drawn power quality are achieved.

    ACKNOWLEDGEMENT .......................................... i ABSTRACT ................................................ ii LIST OF CONTENTS ....................................... iii LIST OF FIGURES ......................................... vi LIST OF TABLES .......................................... xi CHAPTER 1 INTRODUCTION.................................... 1 1.1 Motivation............................................ 1 1.2 Literature survey..................................... 2 1.3 Contributions of this Thesis.......................... 8 1.4 Organizations of this Thesis ......................... 9 CHAPTER 2 INTRODUCTORY RENEWABLE ENERGY SYSTEM ISSUES ... 11 2.1 Introduction......................................... 11 2.2 Possible Micro-Grid System Configurations............ 11 2.3 Introduction to Wind Generators ..................... 13 2.4 Switched-Reluctance Machine ......................... 18 2.5 Some Typical SRM Converters ......................... 19 2.6 Some Key Issues a SRG ............................... 24 2.7 Inverters for Micro-Grid Systems..................... 25 2.7.1 Single-Phase SPWM Inverters ....................... 26 2.7.2 Three-Phase SPWM Inverters ........................ 28 2.8 Some HF Isolated Single-Phase Inverters ............. 31 2.9 Power Quality Parameters ............................ 34 CHAPTER 3 ESTABLISHMENT OF COMMON DC BUS VOLTAGE BY WIND DRIVEN SWITCHED-RELUCTANCE GENERATOR .................... 37 3.1 Introduction......................................... 37 3.2 Basic Characteristics of Switched-Reluctance Generator................................................ 37 3.2.1 Governing Equations ............................... 38 3.2.2 An Actual Switched-Reluctance Generator ........... 40 3.3 The Developed Switched-Reluctance Generator System .. 40 3.3.1 The Employed DSP ADMC401........................... 42 3.3.2 Interfacing Circuits .............................. 42 3.3.3 Dynamic Control ................................... 45 3.4 Design and Evaluation of the Developed Switched-Reluctance Generator .................................... 49 3.5 DSP-Based Current-Fed Push-Pull DC/DC Boost Interface Converter for Switched-Reluctance Generator ............. 60 3.5.1 The Employed DSP TMS320F2812 ...................... 60 3.5.2 Governing Equations ............................... 64 3.5.3 Ratings and Design of Circuit Components .......... 67 3.5.4 Reduction of Voltage Spike Caused by Transformer Leakage Inductance ...................................... 70 3.6 Experimental Results ................................ 71 CHAPTER 4 ESTABLISHMENT OF BATTERY ENERGY STORAGE SYSTEM WITH PLUG-IN AUXILIARY SMR BASED CHARGER ................ 76 4.1 Introduction......................................... 76 4.1.1 Some Bidirectional DC/DC Converters................ 76 4.1.2 Some Single-Phase Isolated SMRs.................... 77 4.2 Bidirectional CFPP-FB DC/DC Converter................ 80 4.2.1 Discharging Mode................................... 81 4.2.2 Charging Mode ..................................... 83 4.3 Performance Evaluation for the Bidirectional CFPP-FB DC/DC Converter ......................................... 86 4.4 CFPP Based SMR for Auxiliary Charger ................ 89 4.4.1 Ratings and Design of Circuit Components .......... 89 4.4.2 Control Scheme .................................... 91 4.4.3 Common Power Circuits with the CFPP Boost Converter 92 4.5 Performance Evaluation for the CFPP Based SMR........ 93 CHAPTER 5 DEVELOPMENT OF THREE-PHASE LOAD INVERTER AND PERFORMANCE EVALUATION OF THE WHOLE DC MICRO-GRID SYSTEM 94 5.1 Introduction......................................... 94 5.2 The Established Experimental Micro-Grid System....... 94 5.3 Three-Phase Three-Wire Inverter ..................... 96 5.3.1 System Configuration .............................. 96 5.3.2 Control Schemes.................................... 97 5.3.3 Measured Results.................................. 100 5.4 Performance Evaluation for the Common DC-Grid....... 106 5.5 Performance Evaluation for the Battery Energy Storage System ................................................. 109 5.5.1 Bidirectional CFPP-FB DC/DC Converter............. 109 5.5.2 CFPP SMR Based Auxiliary Charger ................. 114 CHAPTER 6 CONCLUSIONS .................................. 117 REFERENCES ............................................. 119

    A. Switched-Reluctance Machines and Switched-Reluctance Generators
    [1] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New
    Jersey: John Wiley & Sons, Inc., 1997.
    [2] T. J. E. Miller, Switched Reluctance Motors and Their Control, Oxford: Clarendon
    Press, 1993.
    [3] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis,
    Design, and Applications, New York: CRC Press, 2001.
    [4] A. W. F. V. Silveira, D. A. Andrade, A. V. S. Fleury, L. C. Gomes and C. A.
    Bissochi, “Control of the SRM operating as a motor/generator,” in Proc. IEEE ISIE,
    2009, pp. 1558-1563.
    [5] K. Vijayakumar, R. Karthikeyan, S. Paramasivam , R. Arumugam and K. N. Srinivas,
    “Switched reluctance motor modeling, design, simulation, and analysis: a
    comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
    [6] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of
    singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE
    Conf. Elect. Mach. and Drives, 1997, pp. 361-365.
    [7] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection
    issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol.,
    vol. 55, no. 6, pp. 1756-1764, 2006.
    [8] M. Krishnamurthy, C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani and B. Fahimi,
    “Making the case for applications of switched reluctance motor technology in
    automotive products,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 659-675,
    2006.
    [9] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance
    motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,”
    IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3125, 2009.
    [10] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based
    starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1,
    pp. 116-124, 2004.
    [11] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp.
    48-56, 2009.
    [12] T. G. Wiegele, “Micro-turbo-generator design and fabrication: a preliminary study,”
    in Proc. IEEE IECEC, 1996, vol. 4, pp. 2308-2313.
    [13] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power
    smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans.
    Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
    [14] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Control of a
    switched reluctance generator for variable-speed wind energy applications,” IEEE
    Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
    [15] N. Radimov, N. Ben-Hail and R. Rabinovici, “Switched reluctance machines as
    three-phase AC autonomous generator,” IEEE Trans. Magn., vol. 42, no. 11, pp.
    3760-3764, 2006.
    [16] R. Karthikeyan, K. Vijayakumar and R. Arumugam, “Study on switched reluctance
    generator for rural electrification,” in Proc. IEEE ICIIS, 2009, pp. 472-476.
    [17] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative
    evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
    [18] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance
    drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
    [19] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched
    reluctance motors wherein some windings operate on recovered energy,” IEEE Trans.
    Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
    [20] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for
    switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp.
    912-921, 1997.
    [21] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter
    for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp.
    1228-1236, 2000.
    [22] A. Takahashi, H. Goto, K. Nakamura, T. Watanabe and O. Ichinokura,
    “Characteristics of 8/6 switched reluctance generator excited by suppression resistor
    converter,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3458-3460, 2006.
    [23] N. K. Singh, J. E. Fletcher, S. J. Finney, D. M. Grant and B. W. Williams, “A novel
    switched reluctance generator inverter topology for AC power generation,” in Proc. IET PEMD, 2006, pp. 32-35.
    [24] D. B. Wicklund and D. S. Zinger, “Voltage feedback signal conditioning in switched
    reluctance generation systems,” in Proc. IEEE APEC, 2000, vol. 1, pp. 376-380.
    [25] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme
    for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp.
    445-454, 2008.
    [26] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind.
    Electron., vol. 49, no. 1, pp. 3-14, 2002.
    [27] M. Menne, R. B. Inderka and R. W. De Doncker, “Critical states in generating mode
    of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550.
    [28] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for
    switched reluctance-generators,” IEEE Trans. Energy Convers., vol. 17, no. 1, 2002.
    [29] P. Chancharoensook and M. F. Rahman, “Control of a four-phase switched
    reluctance generator: experimental investigations,” in Proc. IEEE IEMDC, 2003, vol.
    2, pp. 842-848.
    [30] E. Mese, Y. Sozer, J. M. Kokernak and D. A. Torrey, “Optimal excitation of a high
    speed switched reluctance generator,” in Proc. IEEE APEC, 2000, vol. 1, pp.
    362-368.
    [31] H. Chen and Z. Shao, “Turn-on angle control for switched reluctance wind power
    generator system,” in Proc. IEEE IECON, 2004, pp. 2367-2370.
    [32] I. Kioskeridis and C. Mademlis, “Optimal efficiency control of switched reluctance
    generators,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1062-1072, 2006.
    [33] Y. Sozer and D. A. Torrey, “Closed loop control of excitation parameters for high
    speed switched-reluctance generators,” IEEE Trans. Power Electron., vol.19, no. 2,
    pp. 355-362, 2004.
    [34] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled
    switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp.
    556-565, 2005.
    [35] P. Asadi, M. Ehsani and B. Fahimi, “Design and control characterization of switched
    reluctance generator for maximum output power,” in Proc. IEEE APEC, 2006, pp.
    1639-1644.
    [36] A. Fleury, D. Andrade, A. W. F. V. Silveira, F. S. L. Ribeiro, A. Coelho and L. G.
    Cabral, “Dependence of the switched reluctance generator output on the speed and the excitation voltage,” in Proc. IEEE IECON, 2008, pp. 1101-1105.
    [37] E. Echenique, J. Dixon, R. Cardenas and R. Pena, “Sensorless control for a switched
    reluctance wind generator, based on current slopes and neural networks,” IEEE
    Trans. Ind. Electron., vol. 56, no. 3, pp. 817-825, 2009.
    B. Micro-Grid Systems
    [38] H. Hakigano, Y. Miura and T. Ise, “Configuration and control of a DC microgrid for
    residential houses,” in Proc. IEEE T&D Asia, 2009, pp. 1-4.
    [39] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power
    Energy, vol. 5, no. 4, pp. 78-94, 2007.
    [40] P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE CPE, 2007,
    pp. 1-6.
    [41] S. Chakraborty and M. G. Simoes, “Experimental evaluation of active filtering in a
    single-phase high-frequency AC microgrid,” IEEE Trans. Energy Convers., vol. 24,
    no. 3, pp. 673-682, 2009.
    [42] R. H. Lasseter, “MicroGrids,” in Proc. IEEE PESW, 2002, vol. 1, pp. 305-308.
    [43] S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON,
    2007, pp. 635-642.
    [44] R. H. Lasseter, J. H. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp, E.
    Linton, H. Hurtado and J. Roy, “CERTS microgrid laboratory test bed,” IEEE Trans.
    Power Del., vol. 26, no. 1, pp. 325-332, 2011.
    [45] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC Micro-grid for super high quality
    distribution—system configuration and control of distributed generations and energy
    storage devices—,” in Proc. IEEE PESC, 2006, pp. 1-7.
    [46] H. Kakigano, M. Nomura and T. Ise, “Loss evaluation of DC distribution for
    residential houses compared with AC system,” in Proc. IEEE IPEC, 2010, pp.
    480-486.
    [47] S. J. Ahn, J. W. Park, I. Y. Chung, S. I. Moon, S. H. Kang and S. R. Nam,
    “Power-sharing method of multiple distributed generators considering control modes
    and configurations of a microgrid,” IEEE Trans. Power Del., vol. 25, no. 3, pp.
    2007-2016, 2010.
    [48] Díaz, C. González-Morán, J. Gómez-Aleixandre and A. Diez, “Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 489-496, 2010.
    [49] Majumder, B. Chaudhuri, A. Ghosh, R. Majumder, G. Ledwich and F. Zare,
    “Improvement of stability and load sharing in an autonomous microgrid using
    supplementary droop control loop,” IEEE Trans. Power Syst., vol. 25, no. 2, pp.
    796-808, 2010.
    [50] Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti and F. Zare, “Droop control of
    converter-interfaced microsources in rural distributed generation,” IEEE Trans.
    Power Del., vol. 25, no. 4, pp. 2768-2778, 2010.
    [51] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super
    high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp.
    3066-3075, 2010.
    [52] Y. C. Chang, C. H. Cheng, L.Y. Lu and C. M. Liaw, “An experimental switchedreluctance
    generator based distributed power system,” in Proc. IEEE ICEM, 2010,
    pp.1-6.
    [53] T. S. Weerakoon, S. A. Kurera and A. Arulampalam, “Voltage source converters to
    improve the operation of the micro-grid,” in Proc. IEEE ICIIS, 2008, pp. 1-6.
    [54] J. A. Baroudi, V. Dinavahi and A. M. Knight, “A review of power converter
    topologies for wind generators,” in Proc. IEEE IEMDC, 2005, pp. 458-465.
    [55] H. Polinder, F. F. A. van der Pijl, G. J. de Vilder and P. J. Tavner, “Comparison of
    direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy
    Convers., vol. 21, no. 3, pp. 725-733, 2006.
    [56] G. L. Johnson. (2006, Oct. 10). Wind Energy Systems [Online]. Available: http://
    www .eece.ksu.edu/~gjohnson/Windbook.pdf
    C. Bidirectional Interface DC-DC Converters and Switch-Mode
    Rectifiers
    [57] P. Das, S. A. Mousavi and G. Moschopoulos, “Analysis and design of a nonisolated
    bidirectional ZVS-PWM DC-DC converter with coupled inductors,” IEEE Trans.
    Power Electron., vol. 25, no. 10, pp. 2630-2641, 2010.
    [58] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional
    isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power
    Electron., 2011, to be published.
    [59] C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron.,
    vol. 23, no. 5, pp. 2443-2453, 2008.
    [60] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept
    for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24,
    no. 6, pp. 1437-1443, 2009.
    [61] Z. Qian, O. Abdel-Rahman and I. Batarseh, “An integrated four-port DC/DC
    converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25,
    no. 7, pp. 1877-1887, 2010.
    [62] S. Jalbrzykowski, A. Bogdan and T. Citko, “A dual full bridge resonant class-e
    bidirectional DC-DC converter,” IEEE Trans. Ind. Electron., 2011, to be published.
    [63] S. Zhang, O. Thomsen and M. Andersen, “Optimal design of a push-pull-forward
    half-bridge (PPFHB) bidirectional DC-DC converter with variable input voltage”
    IEEE Trans. Ind. Electron., 2011, to be published.
    [64] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based
    bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE,
    2009, pp. 1-10.
    [65] D. Xu, C. Zhao and H. Fan, “A PWM plus phase-shift control bidirectional DC-DC
    converter,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 666-675, 2004.
    [66] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters,
    Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
    [67] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C.
    Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative,
    efficient current-fed push-pull grid connectable inverter for distributed generation
    systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
    [68] J. M. Kwon, E. H. Kim, B. H. Kwon and K. H. Nam, “High-efficiency fuel cell
    power conditioning system with input current ripple reduction,” IEEE Trans. Ind.
    Electron., vol. 56, no. 3, pp. 826-834, 2009.
    [69] W. C. P. de Aragao Filho and I. Barbi, “A comparison between two current-fed
    push-pull DC-DC converters-analysis, design and experimentation,” in Proc. IEEE
    INTELEC, 1996, pp. 313-320.
    [70] A. L. Rabello, C. A. Marcio, G. C. D. Sousa and J. L. F. Vieira, “A fully protected
    push-pull current-fed DC-DC converter,” in Proc. IEEE IECON, 1997, vol. 2, pp.
    587-592.
    [71] D. C. Martins and R. Demonti, “Interconnection of a photovoltaic panels array to a
    single-phase utility line from a static conversion system,” in Proc. IEEE PESC, 2000,
    vol. 3, pp. 1207-1211.
    [72] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull
    DC-DD Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp.
    203-207.
    [73] F. J. Nome and I. Barbi, “A ZVS clamping mode-current-fed push-pull DC-DC
    converter,” in Proc. IEEE ISIE, 2009, vol. 2, pp. 617-621.
    [74] S. Ben-Yaakov and M. M. Peretz, “A self-adjusting sinusoidal power source suitable
    for driving capacitive loads,” IEEE Trans. Power Electron., vol. 21, no. 4, pp.
    890-898, 2006.
    [75] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.,
    Norwell Massachusetts: Kluwer Academic Publishers, 2001.
    [76] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor
    correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755,
    2003.
    [77] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” in Proc.
    IEEE PEDS, 1996, vol. 2, pp. 637-643.
    [78] B. Singh and S. Singh, “Single-phase power factor controller topologies for
    permanent magnet brushless DC motor drives,” IET Power Electron., vol. 3, no. 2,
    pp. 147-175, 2010.
    [79] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust
    ripple compensation and current waveform controls,” IEEE Trans. Power Electron.,
    vol. 19, no. 2, pp. 560-566, 2004.
    [80] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering
    nonlinear behavior,” in Proc. IET Elect. Power Appl., 2007, vol. 1, no. 3, pp.
    316-328.
    [81] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC
    boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
    [82] P. Das, S. Li and G. Moschopoulos, “An improved AC-DC single-stage full-bridge
    converter with reduced DC bus voltage,” IEEE Trans. Ind. Electron., vol. 56, no. 12,
    pp. 4882-4893, 2009.
    [83] E. X. Yang, Y. Jiang, G. Hua and F. C. Lee, “Isolated boost circuit for power factor correction,” in Proc. IEEE APEC, 1993, pp. 196-203.
    [84] Z. Nie, M. Ferdowsi and A. Emadi, “Boost integrated push-pull rectifier with power
    factor correction and output voltage regulation using a new digital control,” in Proc.
    IEEE INTELEC, 2004, pp. 59-64.
    [85] S. L. Patil and A. K. Agarwala, “Push pull boost converter with low loss switching,”
    in Proc. IEEE ICIT, 2008, pp. 1-6.
    [86] L. Sangwon and C. Sewan, “A three-phase current-fed push-pull DC-DC converter
    with active clamp for fuel cell applications,” in Proc. IEEE APEC, 2010, pp.
    1934-1941.
    D. Inverters and PWM Switching Methods
    [87] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters:
    Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
    [88] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall,
    2001.
    [89] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected
    inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
    [90] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of
    single-phase inverters for small distributed power generators: an overview,” IEEE
    Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [91] T. Shimizu and S. Suzuki, “A single-phase grid-connected inverter with power
    decoupling function,” in Proc. IEEE IPEC, 2010, pp. 2918-2923.
    [92] A. C. Kyritsis, E. C. Tatakis and N. P. Papanikolaou, “Optimum design of the
    current-source flyback inverter for decentralized grid-connected photovoltaic
    systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 281-293, 2008.
    [93] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated
    converter topologies with three different DC link configurations,” IEEE Trans.
    Power Electron., vol. 23, no. 3, pp. 1320-1333, 2008.
    [94] C. Rodriguez and G. A. J. Amaratunga, “Long-lifetime power inverter for
    photovoltaic AC modules,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2593-2601,
    2008.
    [95] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system
    employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 149-158, 2009.
    [96] R. A. Mastromauro, M. Liserre and A. Dell'Aquila, “Study of the effects of inductor
    nonlinear behavior on the performance of current controllers for single-phase PV
    grid converters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2043-2052, 2008.
    [97] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Linear current
    control scheme with series resonant harmonic compensator for single-phase
    grid-connected photovoltaic inverters” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp.
    2724-2733, 2008.
    [98] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design
    guidelines for single-phase grid-connected photovoltaic inverters with damped
    resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp.
    4492-4500, 2009.
    [99] J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no.
    5, pp. 410-420, 1992.
    [100] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase
    voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no.
    5, pp. 691-703, 1998.
    [101] C. Meza, J. J. Negroni, D. Biel and F. Guinjoan, “Energy-balance modeling and
    discrete control for single-phase grid-connected PV central inverters,” IEEE Trans.
    Ind. Electron., vol. 55, no. 7, pp. 2734-2743, 2008.
    [102] P. Sanchis, A. Ursæa, E. Gubía and L. Marroyo, “Boost DC-AC inverter: a new
    control strategy,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 343-353, 2005.
    [103] R. A. Mastromauro, M. Liserre, T. Kerekes and A. Dell'Aquila, “A single-phase
    voltage-controlled grid-connected photovoltaic system with power quality
    conditioner functionality,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4436-4444,
    2009.
    [104] H. Kim and K. H. Kim, “Filter design for grid connected PV inverters,” in Proc.
    IEEE ICSET, 2008, pp.1070-1075.
    [105] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter
    considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp.
    1659-1664.
    [106] H. Deng, R. Oruganti and D. Srinivasan, “A simple control method for
    high-performance UPS inverters through output-impedance reduction,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 888-898, 2008.
    [107] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for
    open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp.
    683-689, 1999.
    [108] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed
    PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
    [109] Z. Salam, M. Z. Ramli, L. S. Toh and C. L. Nge, “An isolated bidirectional inverter
    using high frequency certer-tapped transformer,” in Proc. IEEE PEMD, 2004, pp.
    71-75.
    [110] P. K. Jain, K. Wen, H. Soin and Y. Xi, “Analysis and design considerations of a load
    and line independent zero voltage switching full bridge DC/DC converter topology,”
    IEEE Trans. Power Electron., vol. 22, no. 5, pp. 649-657, 2002.
    [111] G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge
    converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp.
    228-235, 2005.
    E. Others
    [112] Y. C. Chang, Development of a switched-reluctance generator and its application to
    the establishment of microgrid system, Ph.D. Dissertation, Dept. Electron. Eng.,
    National Tsing Hua Univ., R.O.C., 2010.
    [113] T. M. Lin, Design and implementation of a DSP-based switched reluctance motor
    drive, M.S. Thesis, Dept. Electron. Eng., National Tsing Hua Univ., R.O.C., 2001.
    [114] “Single-chip, DSP-based high performance motor controller ADMC401,” Analog
    Devices Inc., U.S.A., 2000.
    [115] “ADSP-2100 family user’s manual,” Analog Devices Inc., U.S.A., 1995.
    [116] Y. L. Yang, Development and digital control of inverter systems with galvanic
    isolation and front-end SMR, M.S. Thesis, Dept. Electron. Eng., National Tsing Hua
    Univ., R.O.C., 2008.
    [117] A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans.
    Power Del., vol. 16, no. 4, pp. 782-790, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE