研究生: |
葉功華 Yeh, Kung-Hua |
---|---|
論文名稱: |
使用單芯光纜串聯多個麥克森干涉儀之分區型人為入侵感測系統 Fiber-Optic Intrusion Detection System Based on Multiple Michelson Interferometers Connected in Series through Solely a Single Mode Fiber |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
劉文豐
Liu, Wen-Fung 馮開明 Feng, Kai-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 光纖感測 、光纖雷射 、光纖光柵 、麥克森干涉儀 |
外文關鍵詞: | Fiber Sensor, Fiber Laser, Fiber Bragg Grating, Michelson Interferometer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要介紹一新式的基於麥克森干涉儀之入侵感測系統。本系統使用分波多工的方式製成多個串聯的「防區」,每防區約為50公尺。透過及時偵測不同防區之干涉訊號改變,方可得知哪一防區遭受入侵,若有多個防區同時遭受入侵也能同時偵測,也沒有防區間干擾情形。本實驗共架設四個防區,經過程式觀察入侵產生之訊號強度,即可設定適當的閾值,使之僅針對真實的入侵訊號發布警報。
This paper aims at introducing a new style of intrusion detection system which is based on fiber Michelson interferometer. In this system, by using the technique of wavelength division multiplexing, multiple “defensed-zone” are connected in series. The length of each defensed-zone is about 50m. By detecting the intrusion-induced interference signal changing in each defensed-zone, one can identify which zone is intruded. This system also supports the detection of simultaneously multiple intrusion occurring at several defensed-zones, and the signal from each defensed-zone will not affect each other. In this paper, a four defensed-zone system is built, with each zone having a part of fiber cable attached on a netted fence for the purpose of testing the performance of the intrusion detection system.
[1] J. M. Senior, Optical Fiber Communications: Principle and Practice, 3rd edition, Financial Times/Prentice Hall, 2009.
[2] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, 1st edition, Wiley Interscience, Hoboken, New Jersey, 1991.
[3] C. Saravanos and R. S. Lowe, “Characterization techniques of single-mode fibers,” IEEE Symposium on Antenna Technology and Applied Electromagnetics, pp. 1-6, 1988.
[4] D. Gloge, “Optical fiber theory: opportunities for advancement abound,” Radio Science, Vol. 12, No. 4, pp. 479-490, 1977.
[5] T. Okoshi, “Recent advances in coherent optical fiber communication systems,” IEEE Journal of Lightwave Technology, Vol. 5, No. 1, pp. 44-52, 1987.
[6] S. Gao, W. Zhang, Z. Y. Bai, H. Zhang, W. Lin, L. Wang, and J. Li., “Microfiber-enabled in-line Fabry–Pérot interferometer for high-sensitive force and refractive index sensing,” IEEE Journal of Lightwave Technology, Vol. 32, No. 9, pp. 1682-1688, 2014.
[7] L. Wei, A. Khattak, C. Martz, and D. P. Zhou, “Tunable multimode fiber based filter and its application in cost-effective interrogation of fiber-optic temperature sensors,” IEEE Photonics Journal, Vol. 9, No.2, 2017.
[8] C. Viphavakit, S. O’ Keeffe, M. Yang, S. A. Engels, and E. Lewis, “Gold enhanced hemoglobin interaction in a Fabry–Pérot based optical fiber sensor for measurement of blood refractive index,” IEEE Journal of Lightwave Technology, Vol. 36, No. 4, pp. 1118-1124, 2018.
[9] L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Pérot pressure sensor based on a polymer structure,” IEEE Photonics Technology Letters, Vol. 25, No. 24, pp. 2505-2508, 2013.
[10] H. K. Singh, T. Basumatary., D. Chetia, and T. Bezboruah, “Fiber optic sensor for liquid volume measurement,” IEEE Sensors Journal, Vol. 14, No. 4, pp. 935-936, 2014.
[11] H. Gong, X. Yang, K. Ni, C. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technology Letters, Vol. 26, No. 1, pp. 22-24, 2014.
[12] Q. Li, H. Wang, L. Li, S. Liang, and X. Zhong, “Fiber-optic sensor based on Michelson interferometers for distributed disturbance detection,” Infrared and Laser Engineering, Vol. 44, No. 1, pp. 205-209, 2015.
[13] R. Kashyap and B. K. Nayar, “An all single-mode fiber Michelson interferometer sensor,” IEEE Journal of Lightwave Technology, Vol. LT-1, No. 4, pp. 619-624, 1983.
[14] G. Luo, C. Zhang, L. Li, Z. Ma, T. Lan, C. Li, and W. Lin, “Distributed fiber optic perturbation locating sensor based on dual Mach-Zehnder interferometer,” International Symposium on Photoelectronic Detection and Imaging 2007, pp. 66220z-1 - 66220z-7, 2008.
[15] W. Xu, C. Zhang, S. Liang, L. Li, W. Lin, and Y. Yang, “Fiber-optic distributed sensor based on a Sagnac interferometer with a time delay loop for detecting time varying disturbance,” Microwave and Optical Technology Letters, Vol. 51, Issue 11, pp. 2564-2567, 2009.
[16] X. Fang, “A Variable-Loop Sagnac Interferometer for Distributed Impact Sensing,” IEEE Journal of Lightwave Technology, Vol. 15, No. 6, pp. 972-976, 1997.
[17] S. J. Spammer, P. L. Swart, and A. C. Anatoli , “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” IEEE Journal of Lightwave Technology, Vol. 14, No. 10, pp. 2250-2254, 1996.
[18] A. A. Chtcherbakov, P. L. Swart, S. J. Spammer and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microwave and Optical Technology Letters, Vol. 20, Issue 1, pp. 34-36, 1999.
[19] A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach–Zehnder and modified Sagnac-distributed fiber-optic impact sensor,” Applied Optics, Vol. 37, Issue 16, pp. 3432-3437, 1998.
[20] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” IEEE Journal of Lightwave Technology, Vol. 28, Issue 22, pp. 3243-3249, 2010.
[21] M. Aktas, T. Akgun, M. U. Demicin , and D. Buyukaydin, “Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications,” Fiber Optic Sensors and Applications XIV, Vol. 10208, pp. 102080G, 2017.
[22] J. Gao, Z. Jiang, Y. Zhao, L. Zhu, and G. Zhao, “Full distributed fiber optical sensor for intrusion detection in application to buried pipelines,” Chinese Optics Letters, Vol. 3, No. 11, pp. 633-635, 2005.
[23] J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” IEEE Journal of Lightwave Technology, Vol. 23, No. 6, pp. 2081-2087, 2005.
[24] F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Optics Letters, Vol. 25, No. 8, pp. 575-577, 2000.
[25] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Applied Physics Letters, Vol. 32, No. 10, pp. 647-649, 1978.
[26] B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Optics Letters, Vol. 3, No. 2, pp. 66-68, 1978.
[27] D. K. W. Lam, and B. K. Garside, “Characterization of single-mode optical fiber filters,” Applied Optics, No. 20, pp. 440-445, 1989.
[28] A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Pérot wavelength filter,” Optics Letters, Vol. 18, No. 16, pp. 1370-1372, 1993.
[29] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors” (invited paper), IEEE Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1442-1463, 1997.
[30] J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, “Fiber Bragg grating temperature sensor with controllable sensitivity,” Applied Optics, Vol. 38, No. 13, pp. 2752-2754, 1999.
[31] B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photonics Technology Letters, Vol. 16, No. 1, pp. 224-226, 2004.
[32] Y. S. Hsu, L. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photonics Technology Letters, Vol. 18, No. 7, pp. 874-876, 2006.
[33] M. K. Barnoski, and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Applied Optics, Vol. 15, No. 9, pp. 2112-2115, 1976.
[34] S. M. Zhang, F. Y. Lu, and J. Wang, “All-fiber actively Q-switched Er3+/Yb3+ co-doped ring laser,” Microwave and Optical Technology Letters, Vol. 49, No. 9, pp. 2183-2186, 2007.
[35] Y. Sasaki, T. Hosaka, M. Horiguchi, and J. Noda, “Design and fabrication of low-loss and low-crosstalk polarization-maintaining optical fibers,” IEEE Journal of Lightwave Technology, Vol. LT-4, No. 8, pp. 1097-1102, 1986.
[36] S. Hornung, S. Cassidy, P. Yennadhiou, and M. Reeve, “The blown fiber cable,” IEEE Journal On Selected Areas In Communications, Vol. SAC-4, No. 5, pp. 679-685, 1986.
[37] J. M. Liu, Photonic Devices, Cambridge University Press, 2005.
[38] G. Georgiou and A. C. Boucouvalas, “Low-loss single-mode optical couplers,” IEE Proceedings J - Optoelectronics, Vol. 132, No. 5, pp. 297-302, 1985.
[39] J. R. Cozens and A. C. Boucouvalas, “Coaxial optical coupler,” IEEE Electronics Letters, Vol. 18, No. 3, pp. 138-140, 1982.
[40] D. B. Mortimore, “Fiber loop reflectors,” IEEE Journal of Lightwave Technology, Vol. 6, No. 7, pp. 1217-1224, 1988.
[41] P. Urquhart, “Fiber lasers with loop reflectors,” Applied Optics, Vol. 28, No. 17, pp. 3759-3767, 1989.
[42] A. Othonos, “Fiber Bragg gratings,” Review of Scientific Instruments, Vol. 68, No. 12, pp. 4309-4341, 1997.
[43] M. Imai, T. Ohashi, and Y. Ohtsuka, “Fiber-Optic Michelson interferometer using an optical power divider,” Optics Letters, Vol. 5, No.10, pp. 418-420, 1980.
[44] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 3, No. 4, pp. 991-1007, 1997.
[45] F. D. Mahad, and A. S. M. Supa’at, “EDFA gain optimization for WDM system,” Elektrika, Vol. 11, No. 2, pp. 34-37, 2009.
[46] P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: fundamentals and technology, Academic Press, 1999.
[47] P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photonics Technology Letters, Vol. 13, No. 5, pp. 439-441, 2001.
[48] S. Bielawski, D. Derozier, and P. Glorieux, “Antiphase dynamics and polarization effects in the Nd-doped fiber laser,” Physical Review A, Vol. 46, No. 5, pp. 2811-2822, 1992.
[49] J. C. Campbell, A. G. Dentai, W. S. Holden, and B. L. Kasper, “High-performance avalanche photodiode with separate absorption, ‘grading’, and multiplication regions,” Electronics Letters, Vol. 19, pp. 818-820, 1983.
[50] L. E. Richter, H. I. Mandelberg, M. S. Kruger and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE Journal of Quantum Electronics, Vol. QE-22, No. 11, 1986.
[51] H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Optics Communications, Vol. 155, No. 1, pp. 180-186, 1998.
[52] S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technology Letters, Vol. 28, No. 7, pp. 759-762, 2016.
[53] 林坤松,「戶外端雷射共振腔和麥克森干涉儀之多防區光纖入侵感測系統」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零六年七月。
[54] 謝忻,「兩芯多防區之麥克森干涉儀光纖入侵感測系統」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零六年十二月。