簡易檢索 / 詳目顯示

研究生: 葉功華
Yeh, Kung-Hua
論文名稱: 使用單芯光纜串聯多個麥克森干涉儀之分區型人為入侵感測系統
Fiber-Optic Intrusion Detection System Based on Multiple Michelson Interferometers Connected in Series through Solely a Single Mode Fiber
指導教授: 王立康
Wang, Li-Karn
口試委員: 劉文豐
Liu, Wen-Fung
馮開明
Feng, Kai-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 127
中文關鍵詞: 光纖感測光纖雷射光纖光柵麥克森干涉儀
外文關鍵詞: Fiber Sensor, Fiber Laser, Fiber Bragg Grating, Michelson Interferometer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要介紹一新式的基於麥克森干涉儀之入侵感測系統。本系統使用分波多工的方式製成多個串聯的「防區」,每防區約為50公尺。透過及時偵測不同防區之干涉訊號改變,方可得知哪一防區遭受入侵,若有多個防區同時遭受入侵也能同時偵測,也沒有防區間干擾情形。本實驗共架設四個防區,經過程式觀察入侵產生之訊號強度,即可設定適當的閾值,使之僅針對真實的入侵訊號發布警報。


    This paper aims at introducing a new style of intrusion detection system which is based on fiber Michelson interferometer. In this system, by using the technique of wavelength division multiplexing, multiple “defensed-zone” are connected in series. The length of each defensed-zone is about 50m. By detecting the intrusion-induced interference signal changing in each defensed-zone, one can identify which zone is intruded. This system also supports the detection of simultaneously multiple intrusion occurring at several defensed-zones, and the signal from each defensed-zone will not affect each other. In this paper, a four defensed-zone system is built, with each zone having a part of fiber cable attached on a netted fence for the purpose of testing the performance of the intrusion detection system.

    致謝 I 摘要 II 第一章 緒論 1 1.1 論文架構 1 1.2 研究背景 1 1.3 研究動機 2 1.4 文獻回顧 3 1.4.1 基於布拉格光纖光柵之感測系統 3 1.4.2 對光纖光柵進行負溫度補償之系統 5 1.4.3 基於光時域反射測量術之入侵感測系統 7 1.4.4 基於光纖式干涉儀之入侵感測系統 9 1.4.5 使用干涉儀產生Q開關之系統 11 第二章 實驗基礎原理 13 2.1 光纖(OPTICAL FIBER) 13 2.2 光纖中的衰減(ATTENUATION)機制 15 2.3 光纖耦合器(FIBER COUPLER) 16 2.4 光纖環形反射器 (FIBER LOOP REFLECTOR) 17 2.5 光纖布拉格光柵(FIBER BRAGG GRATING, FBG) 19 2.6 分波多工器(WAVELENGTH DIVISION MULTIPLEXER, WDM) 20 2.7 麥克森干涉儀(MICHELSON INTERFEROMETER) 21 2.8 光的同調性(OPTICAL COHERENCE) 23 2.9 摻鉺光纖放大器與雷射(ERBIUM-DOPED FIBER AMPLIFIER AND LASER, EDFA AND EDF LASER) 24 2.10 使用干涉儀產生Q開關(Q-SWITCHING) 27 2.11 光偵測器(PHOTODETECTOR, PD) 29 第三章 實驗架構 32 3.1 架構運作原理 33 3.2 泵浦光源與1480/1550-NM分波多工器性質 36 3.3 密集分波多工器性質 41 3.4 光纖布拉格光柵性質 47 3.5 各防區雷射性質 49 3.6 數據擷取機性質 55 3.7 系統可正常運作之溫度範圍分析 55 3.8 判斷入侵之演算法 57 第四章 實驗結果與分析 61 4.1 實驗規劃 61 4.2 防區間互相干擾及無入侵時波形不穩定原因分析 63 4.3 室內測試 71 4.3.1 第一防區訊號偵測(室內) 71 4.3.2 第二防區訊號偵測(室內) 73 4.3.3 第三防區訊號偵測(室內) 76 4.3.4 第四防區訊號偵測(室內) 81 4.3.5 各防區單次拍擊訊號偵測(室內) 84 4.3.6 多防區同時入侵測試(室內) 91 4.3.7 將干涉儀參考臂完全彎曲至無光測試 91 4.4 戶外測試 92 4.4.1 第一防區訊號偵測(戶外) 92 4.4.2 第二防區訊號偵測(戶外) 95 4.4.3 第三防區訊號偵測(戶外) 99 4.4.4 第四防區訊號偵測與(戶外) 102 4.4.5 第一防區飛鳥碰觸訊號偵測(戶外) 106 4.4.6 第二防區飛鳥碰觸訊號偵測(戶外) 110 4.4.7 第一防區棒球撞擊訊號偵測(戶外) 114 第五章 結語 117 5.1 實驗之結論 117 5.2 未來展望 117 參考文獻 120

    [1] J. M. Senior, Optical Fiber Communications: Principle and Practice, 3rd edition, Financial Times/Prentice Hall, 2009.
    [2] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, 1st edition, Wiley Interscience, Hoboken, New Jersey, 1991.
    [3] C. Saravanos and R. S. Lowe, “Characterization techniques of single-mode fibers,” IEEE Symposium on Antenna Technology and Applied Electromagnetics, pp. 1-6, 1988.
    [4] D. Gloge, “Optical fiber theory: opportunities for advancement abound,” Radio Science, Vol. 12, No. 4, pp. 479-490, 1977.
    [5] T. Okoshi, “Recent advances in coherent optical fiber communication systems,” IEEE Journal of Lightwave Technology, Vol. 5, No. 1, pp. 44-52, 1987.
    [6] S. Gao, W. Zhang, Z. Y. Bai, H. Zhang, W. Lin, L. Wang, and J. Li., “Microfiber-enabled in-line Fabry–Pérot interferometer for high-sensitive force and refractive index sensing,” IEEE Journal of Lightwave Technology, Vol. 32, No. 9, pp. 1682-1688, 2014.
    [7] L. Wei, A. Khattak, C. Martz, and D. P. Zhou, “Tunable multimode fiber based filter and its application in cost-effective interrogation of fiber-optic temperature sensors,” IEEE Photonics Journal, Vol. 9, No.2, 2017.
    [8] C. Viphavakit, S. O’ Keeffe, M. Yang, S. A. Engels, and E. Lewis, “Gold enhanced hemoglobin interaction in a Fabry–Pérot based optical fiber sensor for measurement of blood refractive index,” IEEE Journal of Lightwave Technology, Vol. 36, No. 4, pp. 1118-1124, 2018.
    [9] L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Pérot pressure sensor based on a polymer structure,” IEEE Photonics Technology Letters, Vol. 25, No. 24, pp. 2505-2508, 2013.
    [10] H. K. Singh, T. Basumatary., D. Chetia, and T. Bezboruah, “Fiber optic sensor for liquid volume measurement,” IEEE Sensors Journal, Vol. 14, No. 4, pp. 935-936, 2014.
    [11] H. Gong, X. Yang, K. Ni, C. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technology Letters, Vol. 26, No. 1, pp. 22-24, 2014.
    [12] Q. Li, H. Wang, L. Li, S. Liang, and X. Zhong, “Fiber-optic sensor based on Michelson interferometers for distributed disturbance detection,” Infrared and Laser Engineering, Vol. 44, No. 1, pp. 205-209, 2015.
    [13] R. Kashyap and B. K. Nayar, “An all single-mode fiber Michelson interferometer sensor,” IEEE Journal of Lightwave Technology, Vol. LT-1, No. 4, pp. 619-624, 1983.
    [14] G. Luo, C. Zhang, L. Li, Z. Ma, T. Lan, C. Li, and W. Lin, “Distributed fiber optic perturbation locating sensor based on dual Mach-Zehnder interferometer,” International Symposium on Photoelectronic Detection and Imaging 2007, pp. 66220z-1 - 66220z-7, 2008.
    [15] W. Xu, C. Zhang, S. Liang, L. Li, W. Lin, and Y. Yang, “Fiber-optic distributed sensor based on a Sagnac interferometer with a time delay loop for detecting time varying disturbance,” Microwave and Optical Technology Letters, Vol. 51, Issue 11, pp. 2564-2567, 2009.
    [16] X. Fang, “A Variable-Loop Sagnac Interferometer for Distributed Impact Sensing,” IEEE Journal of Lightwave Technology, Vol. 15, No. 6, pp. 972-976, 1997.
    [17] S. J. Spammer, P. L. Swart, and A. C. Anatoli , “Merged Sagnac–Michelson interferometer for distributed disturbance detection,” IEEE Journal of Lightwave Technology, Vol. 14, No. 10, pp. 2250-2254, 1996.
    [18] A. A. Chtcherbakov, P. L. Swart, S. J. Spammer and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microwave and Optical Technology Letters, Vol. 20, Issue 1, pp. 34-36, 1999.
    [19] A. A. Chtcherbakov, P. L. Swart, and S. J. Spammer, “Mach–Zehnder and modified Sagnac-distributed fiber-optic impact sensor,” Applied Optics, Vol. 37, Issue 16, pp. 3432-3437, 1998.
    [20] Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” IEEE Journal of Lightwave Technology, Vol. 28, Issue 22, pp. 3243-3249, 2010.
    [21] M. Aktas, T. Akgun, M. U. Demicin , and D. Buyukaydin, “Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications,” Fiber Optic Sensors and Applications XIV, Vol. 10208, pp. 102080G, 2017.
    [22] J. Gao, Z. Jiang, Y. Zhao, L. Zhu, and G. Zhao, “Full distributed fiber optical sensor for intrusion detection in application to buried pipelines,” Chinese Optics Letters, Vol. 3, No. 11, pp. 633-635, 2005.
    [23] J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” IEEE Journal of Lightwave Technology, Vol. 23, No. 6, pp. 2081-2087, 2005.
    [24] F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Optics Letters, Vol. 25, No. 8, pp. 575-577, 2000.
    [25] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Applied Physics Letters, Vol. 32, No. 10, pp. 647-649, 1978.
    [26] B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Optics Letters, Vol. 3, No. 2, pp. 66-68, 1978.
    [27] D. K. W. Lam, and B. K. Garside, “Characterization of single-mode optical fiber filters,” Applied Optics, No. 20, pp. 440-445, 1989.
    [28] A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Pérot wavelength filter,” Optics Letters, Vol. 18, No. 16, pp. 1370-1372, 1993.
    [29] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors” (invited paper), IEEE Journal of Lightwave Technology, Vol. 15, No. 8, pp. 1442-1463, 1997.
    [30] J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, “Fiber Bragg grating temperature sensor with controllable sensitivity,” Applied Optics, Vol. 38, No. 13, pp. 2752-2754, 1999.
    [31] B. O. Guan, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photonics Technology Letters, Vol. 16, No. 1, pp. 224-226, 2004.
    [32] Y. S. Hsu, L. Wang, W. F. Liu, and Y. J. Chiang, “Temperature compensation of optical fiber Bragg grating pressure sensor,” IEEE Photonics Technology Letters, Vol. 18, No. 7, pp. 874-876, 2006.
    [33] M. K. Barnoski, and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Applied Optics, Vol. 15, No. 9, pp. 2112-2115, 1976.
    [34] S. M. Zhang, F. Y. Lu, and J. Wang, “All-fiber actively Q-switched Er3+/Yb3+ co-doped ring laser,” Microwave and Optical Technology Letters, Vol. 49, No. 9, pp. 2183-2186, 2007.
    [35] Y. Sasaki, T. Hosaka, M. Horiguchi, and J. Noda, “Design and fabrication of low-loss and low-crosstalk polarization-maintaining optical fibers,” IEEE Journal of Lightwave Technology, Vol. LT-4, No. 8, pp. 1097-1102, 1986.
    [36] S. Hornung, S. Cassidy, P. Yennadhiou, and M. Reeve, “The blown fiber cable,” IEEE Journal On Selected Areas In Communications, Vol. SAC-4, No. 5, pp. 679-685, 1986.
    [37] J. M. Liu, Photonic Devices, Cambridge University Press, 2005.
    [38] G. Georgiou and A. C. Boucouvalas, “Low-loss single-mode optical couplers,” IEE Proceedings J - Optoelectronics, Vol. 132, No. 5, pp. 297-302, 1985.
    [39] J. R. Cozens and A. C. Boucouvalas, “Coaxial optical coupler,” IEEE Electronics Letters, Vol. 18, No. 3, pp. 138-140, 1982.
    [40] D. B. Mortimore, “Fiber loop reflectors,” IEEE Journal of Lightwave Technology, Vol. 6, No. 7, pp. 1217-1224, 1988.
    [41] P. Urquhart, “Fiber lasers with loop reflectors,” Applied Optics, Vol. 28, No. 17, pp. 3759-3767, 1989.
    [42] A. Othonos, “Fiber Bragg gratings,” Review of Scientific Instruments, Vol. 68, No. 12, pp. 4309-4341, 1997.
    [43] M. Imai, T. Ohashi, and Y. Ohtsuka, “Fiber-Optic Michelson interferometer using an optical power divider,” Optics Letters, Vol. 5, No.10, pp. 418-420, 1980.
    [44] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 3, No. 4, pp. 991-1007, 1997.
    [45] F. D. Mahad, and A. S. M. Supa’at, “EDFA gain optimization for WDM system,” Elektrika, Vol. 11, No. 2, pp. 34-37, 2009.
    [46] P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: fundamentals and technology, Academic Press, 1999.
    [47] P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photonics Technology Letters, Vol. 13, No. 5, pp. 439-441, 2001.
    [48] S. Bielawski, D. Derozier, and P. Glorieux, “Antiphase dynamics and polarization effects in the Nd-doped fiber laser,” Physical Review A, Vol. 46, No. 5, pp. 2811-2822, 1992.
    [49] J. C. Campbell, A. G. Dentai, W. S. Holden, and B. L. Kasper, “High-performance avalanche photodiode with separate absorption, ‘grading’, and multiplication regions,” Electronics Letters, Vol. 19, pp. 818-820, 1983.
    [50] L. E. Richter, H. I. Mandelberg, M. S. Kruger and P. A. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE Journal of Quantum Electronics, Vol. QE-22, No. 11, 1986.
    [51] H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Optics Communications, Vol. 155, No. 1, pp. 180-186, 1998.
    [52] S. Huang, T. Zhu, Z. Cao, M. Liu, M. Deng, J. Liu, and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope,” IEEE Photonics Technology Letters, Vol. 28, No. 7, pp. 759-762, 2016.
    [53] 林坤松,「戶外端雷射共振腔和麥克森干涉儀之多防區光纖入侵感測系統」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零六年七月。
    [54] 謝忻,「兩芯多防區之麥克森干涉儀光纖入侵感測系統」,國立清華大學光電工程研究所碩士班碩士論文,民國一百零六年十二月。

    QR CODE