研究生: |
子辰 Chamchan, Nipon |
---|---|
論文名稱: |
填充床與旋轉床吸收器模型驗證工廠數據 Validation of packed bed and rotating packed bed absorber model with pilot-plant data |
指導教授: |
汪上曉
David Shan-Hill Wong |
口試委員: |
鄭西顯
吳煒 陳榮輝 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 117 |
中文關鍵詞: | 轉動的填充床吸收體 、模仿 、實驗設備 、一乙醇胺 、二氧化碳捕集 |
外文關鍵詞: | Rotating Packed Bed Absorber, Simulation, Pilot plant, Monoethanolamine, Carbon dioxide capture |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這研究,填充床和轉動的填充床模型的摘要確認了與實驗設備數據。PB模型確認了與Radfrac率根據模型亞斯本加上,並且在ACM平台的機構內部的PB模型,模仿結果顯示了好對應在兩模型。然而,質量傳遞交互作用模型應該小心地精選取決於包裝的種類。 Billet和Schultes (1999)模型很好展示與任意包裝,但是不在被構造的包裝的系統。然而,在Aspen加上和ACM展示開發的模型相當同樣模仿結果。對於Bravo (1985)和Hanley (2012),質量傳遞交互作用模型展示在被構造的包裝的系統的好結果和相當高在任意包裝系統。此外, RPB模型在ACM被開發了與假定以及在鉛模型,但是在另外幾何吸收體模型。 RPB結果展示了與實驗數據的令人滿意的結果。所以,在ACM的機構內部的模型在實驗設備標度顯示可靠的模仿結果。
In this research, the model of packed bed and rotating packed bed was validated with pilot plant data. The PB model was validated with Radfrac rate-based model on Aspen plus and in-house PB model on ACM platform, the simulation results showed good corresponding on both model. However, the mass transfer correlation model should be carefully select depends on the type of packing. With Billet and Schultes (1999) model demonstrate well with random packing but not in structured packing system. However, the model developed on Aspen plus and ACM show quite the same simulation results.
For Bravo (1985) and Hanley (2012), mass transfer correlation model show the good result on structured packing system and quite higher in random packing system.
Furthermore, RPB model was developed on ACM with an assumption as well as in PB model, but in different geometry absorber model. The RPB results demonstrated the satisfactory result with the experiment data. Therefore, the in-house model on ACM shows the reliable simulation result in the pilot plant scale.
Kang, J. L., Sun, K., Wong, D. S. H., Jang, S. S. & Tan, C. S. Modeling studies on absorption of CO2 by monoethanolamine in rotating packed bed. Int J Greenh Gas Con 25, 141-150, (2014).
2 DOE/NETL. Carbon Dioxide Capture and Storage RD and D roadmap. (National Energy Technology Laboratory (NETL), 2010).
3 IPCC. Climate Change 2014: Synthesis Report. 3 (IPCC, 2014).
4 Leung, D. Y. C., Caramanna, G. & Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39, 426-443, (2014).
5 Ramshaw, C. & Mallinson, R. H.(Google Patents, 1981).
6 Onda, K., Takeuchi, H. & Okumoto Y., Mass transfer coeffiecients between gas and liquid phases in packed culumns. Journal of Chemical Engineering of Japan 1, 56-62, (1968).
7 Tung, H. H. & Mah, R. S. H. Modeling Liquid Mass-Transfer in Higee Separation Process. Chem Eng Commun 39, 147-153, (1985).
8 Burns, J. R., Jamil, J. N. & Ramshaw, C. Process intensification: operating characteristics of rotating packed beds - determination of liquid hold-up for a high-voidage structured packing. Chem Eng Sci 55, 2401-2415, (2000).
9 Hikita, H., Asai, S., Ishikawa, H. & Honda, M. The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method. The Chemical Engineering Journal 13, 7-12, (1977).
10 Aboudheir, A., Tontiwachwuthikul, P., Chakma, A. & Idem, R. Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chem Eng Sci 58, 5195-5210, (2003).
11 Evans, L. B. et al. Aspen - an Advanced System for Process Engineering. Comput Chem Eng 3, 319-327, (1979).
12 Steeneveldt, R., Berger, B. & Torp, T. A. CO2 capture and storage - Closing the knowing-doing gap. Chem Eng Res Des 84, 739-763, (2006).
13 Olajire, A. A. CO2 capture and separation technologies for end-of-pipe applications – A review. Energy 35, 2610-2628, (2010).
14 Rackley, S. A. Carbon capture and storage. (2010).
15 Rao, D. P., Bhowal, A. & Goswami, P. S. Process intensification in rotating packed beds (HIGEE): An appraisal. Ind Eng Chem Res 43, 1150-1162, (2004).
16 Chen, Y. S., Lin, C. C. & Liu, H. S. Mass transfer in a rotating packed bed with various radii of the bed. Ind Eng Chem Res 44, 7868-7875, (2005).
17 Lee J, R. D., Ramshaw C. Post-combustion carbon capture research at Newcastle University, Presentation to PIN, 2012).
18 Yi, F., Zou, H. K., Chu, G. W., Shao, L. & Chen, J. F. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed. Chem Eng J 145, 377-384, (2009).
19 Zhang, L. L., Wang, J. X., Xiang, Y., Zeng, X. F. & Chen, J. F. Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Ind Eng Chem Res 50, 6957-6964, (2011).
20 Luo, Y. et al. Gas-Liquid Effective Interfacial Area in a Rotating Packed Bed. Ind Eng Chem Res 51, 16320-16325, (2012).
21 Luo, Y. et al. Characteristics of a two-stage counter-current rotating packed bed for continuous distillation. Chem Eng Process 52, 55-62, (2012).
22 Yu, C. H., Cheng, H. H. & Tan, C. S. CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. Int J Greenh Gas Con 9, 136-147, (2012).
23 Cheng, H. H. & Tan, C. S. Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. J Power Sources 162, 1431-1436, (2006).
24 Cheng, H. H. & Tan, C. S. Removal of CO2 from indoor air by alkanolamine in a rotating packed bed. Sep Purif Technol 82, 156-166, (2011).
25 Joel, A. S., Wang, M. H., Ramshaw, C. & Oko, E. Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation. Int J Greenh Gas Con 21, 91-100, (2014).
26 Tontiwachwuthikul, P. New pilot plant technique for designing gas absorbers with chemical reactions, (1990).
27 Tontiwachwuthikul, P., Meisen, A. & Lim, C. J. Co2 Absorption by Naoh, Monoethanolamine and 2-Amino-2-Methyl-1-Propanol Solutions in a Packed-Column. Chem Eng Sci 47, 381-390, (1992).
28 Aroonwilas, A., Chakma, A., Tontiwachwuthikul, P. & Veawab, A. Mathematical modelling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings. Chem Eng Sci 58, 4037-4053, (2003).
29 deMontigny, D., Kritpiphat, W., Gelowitz, D. & Tontiwachwuthikul, P. Clean technology using cogeneration concepts for simultaneous production of electricity, steam, and industrial gases: A route to zero pollution discharge - A case study for enhanced oil recovery in Canada. Energ Source 21, 39-50 (1999).
30 Dugas, R. E. Pilot plant study of carbon dioxide capture by aqueous monoethanolamine. (2006).
31 Tobiesen, F. A., Svendsen, H. F. & Juliussen, O. Experimental validation of a rigorous absorber model for CO2 postcombustion capture. Aiche Journal 53, 846-865, (2007).
32 Kvamsdal, H. M. & Rochelle, G. T. Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind Eng Chem Res 47, 867-875, (2008).
33 Dugas, R., Alix, P., Lemaire, E., Broutin, P. & Rochelle, G. Absorber model for CO 2 capture by monoethanolamine—application to CASTOR pilot results. Energy Procedia 1, 103-107 (2009).
34 Luo, X. et al. Comparison and validation of simulation codes against sixteen sets of data from four different pilot plants. Enrgy Proced 1, 1249-1256, (2009).
35 Mangalapally, H. P. et al. Pilot plant experimental studies of post combustion CO 2 capture by reactive absorption with MEA and new solvents. Energy Procedia 1, 963-970 (2009).
36 Plaza, J. M., Van Wagener, D. & Rochelle, G. T. Modeling CO2 capture with aqueous monoethanolamine. Int J Greenh Gas Con 4, 161-166, (2010).
37 Simon, L. L., Elias, Y., Puxty, G., Artanto, Y. & Hungerbuhler, K. Rate based modeling and validation of a carbon-dioxide pilot plant absorbtion column operating on monoethanolamine. Chemical Engineering Research and Design 89, 1684-1692 (2011).
38 P, P. V. O. CESAR (CO2 Enhanced Separation and Recovery), Final report Project reference : 213569 2011).
39 Mangalapally, H. P. & Hasse, H. Pilot plant study of post-combustion carbon dioxide capture by reactive absorption: Methodology, comparison of different structured packings, and comprehensive results for monoethanolamine. Chem Eng Res Des 89, 1216-1228, (2011).
40 Notz, R., Mangalapally, H. P. & Hasse, H. Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. Int J Greenh Gas Con 6, 84-112, (2012).
41 Kvamsdal, H. M. & Hillestad, M. Selection of model parameter correlations in a rate-based CO2 absorber model aimed for process simulation. Int J Greenh Gas Con 11, 11-20, (2012).
42 Sonderby, T. L., Carlsen, K. B., Fosbol, P. L., Kiorboe, L. G. & von Solms, N. A new pilot absorber for CO2 capture from flue gases: Measuring and modelling capture with MEA solution. Int J Greenh Gas Con 12, 181-192, (2013).
43 Saimpert, M., Puxty, G., Qureshi, S., Wardhaugh, L. & Cousins, A. A new rate based absorber and desorber modelling tool. Chem Eng Sci 96, 10-25, (2013).
44 Kenig, E. Y. & Gorak, A. Rigorous modeling of reactive absorption processes. Chem Eng Technol 26, 631-646, (2003).
45 Noeres, C., Kenig, E. Y. & Gorak, A. Modelling of reactive separation processes: reactive absorption and reactive distillation. Chem Eng Process 42, 157-178, (2003).
46 Pandya, J. D. Adiabatic Gas-Absorption and Stripping with Chemical-Reaction in Packed Towers. Chem Eng Commun 19, 343-361, (1983).
47 Treybal, R. E. Adiabatic Gas Absorption and Stripping in Packed Towers. Ind Eng Chem 61, 36-&, (1969).
48 Krishnamurthy, R. & Taylor, R. A nonequilibrium stage model of multicomponent separation processes. Part I: model description and method of solution. AIChE Journal 31, 449-456 (1985).
49 Krishnamurthy, R. & Taylor, R. A nonequilibrium stage model of multicomponent separation processes. Part II: Comparison with experiment. AIChE Journal 31, 456-465 (1985).
50 Kenig, E. & Gorak, A. A Film Model-Based Approach for Simulation of Multicomponent Reactive Separation. Chem Eng Process 34, 97-103, (1995).
51 Kvamsdal, H. M., Jakobsen, J. P. & Hoff, K. A. Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chem Eng Process 48, 135-144, (2009).
52 Tonnies, I., Mangalapally, H. P. & Hasse, H. Sensitivity study for the rate-based simulation of the reactive absorption of CO2. 10th International Conference on Greenhouse Gas Control Technologies 4, 533-540, (2011).
53 Cormos, A. M. & Gaspar, J. Assessment of mass transfer and hydraulic aspects of CO2 absorption in packed columns. Int J Greenh Gas Con 6, 201-209, (2012).
54 Kale, C., Tonnies, I., Hasse, H. & Gorak, A. Simulation of Reactive Absorption: Model Validation for CO(2)-MEA system. Comput-Aided Chem En 29, 61-65 (2011).
55 Kale, C., Gorak, A. & Schoenmakers, H. Modelling of the reactive absorption of CO2 using mono-ethanolamine. Int J Greenh Gas Con 17, 294-308, (2013).
56 Mangalapally, H. P. & Hasse, H. Pilot plant study of two new solvents for post combustion carbon dioxide capture by reactive absorption and comparison to monoethanolamine. Chem Eng Sci 66, 5512-5522, (2011).
57 von Harbou, I., Imle, M. & Hasse, H. Modeling and simulation of reactive absorption of CO2 with MEA: Results for four different packings on two different scales. Chem Eng Sci 105, 179-190, (2014).
58 Afkhamipour, M. & Mofarahi, M. Sensitivity analysis of the rate-based CO2 absorber model using amine solutions (MEA, MDEA and AMP) in packed columns. Int J Greenh Gas Con 25, 9-22, (2014).
59 Aspen. (Aspen Tech., 2008).
60 Whitman, W. G. The two film theory of gas absorption. International Journal of Heat and Mass Transfer 5, 429-433, (1962).
61 Taylor, R., Krishna, R. & Kooijman, H. Real-world modeling of distillation. transfer 1000, 1 (2003).
62 Mock, B., Evans, L. & Chen, C. in Proc. Summer Comput. Simul. Conf.558-562.
63 Renon, H. & Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE journal 14, 135-144 (1968).
64 Flemr, V. A note on excess Gibbs energy equations based on local composition concept. Collection of Czechoslovak Chemical Communications 41, 3347-3349 (1976).
65 McDermott, C. & Ashton, N. Note on the definition of local composition. Fluid Phase Equilibria 1, 33-35 (1977).
66 Austgen, D. M., Rochelle, G. T., Peng, X. & Chen, C. C. Model of Vapor Liquid Equilibria for Aqueous Acid Gas Alkanolamine Systems Using the Electrolyte Nrtl Equation. Ind Eng Chem Res 28, 1060-1073, (1989).
67 Hoff, K. A., Juliussen, O., Falk-Pedersen, O. & Svendsen, H. F. Modeling and experimental study of carbon dioxide absorption in aqueous alkanolamine solutions using a membrane contactor. Ind Eng Chem Res 43, 4908-4921, (2004).
68 Aspen. Overview of Aspen Physical Property methods. Aspen Properties Help (2013).
69 Danckwerts, P. V. Reaction of Co2 with Ethanolamines. Chem Eng Sci 34, 443-446, (1979).
70 Versteeg, G. & Van Swaaij, W. On the kinetics between CO 2 and alkanolamines both in aqueous and non-aqueous solutions—I. Primary and secondary amines. Chem Eng Sci 43, 573-585 (1988).
71 Wang, Y. W., Xu, S., Otto, F. D. & Mather, A. E. Solubility of N2o in Alkanolamines and in Mixed-Solvents. Chem Eng J Bioch Eng 48, 31-40, (1992).
72 Tsai, T. C., Ko, J. J., Wang, H. M., Lin, C. Y. & Li, M. H. Solubility of nitrous oxide in alkanolamine aqueous solutions. J Chem Eng Data 45, 341-347, (2000).
73 Sander, R. (Max-Planck Institute of Chemistry, Air Chemistry Department Mainz, Germany, 1999).
74 Kenig, E. Y., Schneider, R. & Gorak, A. Reactive absorption: Optimal process design via optimal modelling. Chem Eng Sci 56, 343-350, (2001).
75 Decourse.Wj. Absorption with Chemical-Reaction - Development of a New Relation for Danckwerts Model. Chem Eng Sci 29, 1867-1872, (1974).
76 Lawal, A., Wang, M., Stephenson, P., Koumpouras, G. & Yeung, H. Dynamic modelling and analysis of post-combustion CO 2 chemical absorption process for coal-fired power plants. Fuel 89, 2791-2801 (2010).
77 Lewis, W. & Whitman, W. Principles of gas absorption. Industrial & Engineering Chemistry 16, 1215-1220 (1924).
78 Fick, A. V. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 10, 30-39 (1855).
79 Billet, R. & Schultes, M. Prediction of mass transfer columns with dumped and arranged packings - Updated summary of the calculation method of Billet and Schultes. Chem Eng Res Des 77, 498-504, (1999).
80 Puranik, S. A. & Vogelpoh.A. Effective Exchange Area in Packed-Columns. Chem-Ing-Tech 46, 164-164 (1974).
81 Lin, C. C., Chen, Y. S. & Liu, H. S. Prediction of liquid holdup in countercurrent-flow rotating packed bed. Chem Eng Res Des 78, 397-403, (2000).
82 Ergun, S. Fluid Flow through Packed Columns. Chem Eng Prog 48, 89-94 (1952).
83 Decoursey, W. J. Enhancement Factors for Gas-Absorption with Reversible-Reaction. Chem Eng Sci 37, 1483-1489, (1982).
84 Froment, G. F., Bischoff, K. B. & De Wilde, J. Chemical reactor analysis and design. Vol. 2 (Wiley New York, 1990).
85 Zhang, Y. et al. Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution. Ind Eng Chem Res 48, 9233-9246, (2009).
86 Bravo, J. L., Rocha, J. & Fair, J. Mass transfer in gauze packings. Hydrocarb Process 64, 91-95 (1985).
87 Razi, N., Bolland, O. & Svendsen, H. Review of design correlations for CO2 absorption into MEA using structured packings. Int J Greenh Gas Con 9, 193-219, (2012).
88 Hanley, B. & Chen, C. C. New mass‐transfer correlations for packed towers. AIChE journal 58, 132-152 (2012).