簡易檢索 / 詳目顯示

研究生: 陳勝符
論文名稱: 光學低同調顯微技術之系統組建與系統研究
Construction and systematic study of an optical coherence microscopy
指導教授: 吳見明
Chien-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 63
中文關鍵詞: 光學童調斷層掃瞄技術光學童調斷層顯微技術掃瞄系統同調長度
外文關鍵詞: optical coherence tomography, optical coherence microscopy, scanning system, coherence length
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此次的研究中, 我們建立一套整合光學同調斷層掃瞄技術與等倍望遠鏡式掃描系統所組成的平面掃描系統。利用光學同調斷層掃瞄技術裡的低同調光源特性,確定同調的區域;並結合等倍望遠鏡式掃描系統在完成的二維平面影像上區別出同調的影像。而望遠鏡式掃描系統可藉由數學上理論的推導驗證。
    系統參數設定的部份,縱向解析力可利用130毫安培的順向電流驅動超級發光二極體光源,使其達到8.50微米。另外,在步進馬達精確度方面,可利用互相關的分析方法(cross correlation)進行實驗的分析。藉由分析CCD所擷取兩光點的相對位移量,在設定步進馬達每步1微米的量測實驗中,每步移動的誤差範圍為0.02微米。同理,應用於掃瞄鏡組,橫向解析力可藉由0.006伏特的電壓驅動伺服馬達使掃瞄鏡轉動,造成光進入物鏡後在物鏡的焦平面上位移5微米。在折射率的鑑別方面,藉由使用不同折射率匹配液的量測,可量測到最小折射率的鑑別度為0.07。目前,我們建構的光學同調平面掃描系統可以完成二維平面影像的掃描,但無法進一步有效的區別影像中的同調區域。


    In this study, we established an en-face scanning system by integrating an optical coherence tomography (OCT) and a telescope-based scanning system. Using the characteristic of developed OCT, a low coherent light source, together with the coherent gate and a telescope-based scanning system, two-dimension coherent image can be identified. The design of telescope-based scanning system could be also verified by mathematical matrix deduction.

    As for the system performance, we applied 130 mA electrical current to drive superluminant diode (SLD) such that the axial resolution could reach to 8.50 μm. In addition, in an effort to estimate the precision of stepping motor the corresponding spot image for each step is captured using CCD; therefore, the precision with each step, that is, the distance between two consecutive spots, could be obtained using two-dimensional cross-correlation process. In the precision of stepping motor experiment that setting 1 μm per step, the error can be kept 0.02 μm. Similarly, the process could be also applied to estimate the transversal resolution of the scanning system. We found that it requires 0.6 mV to drive the scanning mirror so that 5 μm displacement at the focal plane of the objective could be obtained. Furthermore, while measuring the oil with different refractive index, the result shows that the visibility of refractive index difference that can be identified is 0.07. Presently, our instrument can accomplish two-dimensional image scan but it can’t be distinguished by the coherence gate.

    中文摘要.....................Ⅰ 英文摘要.....................Ⅱ 誌謝.......................Ⅲ 目錄.......................Ⅳ 圖表目錄.....................VI 表目錄...................... X 第一章 緒論....................1 1.1 研究動機.................. 1 1.2 文獻回顧.................. 3 1.3 論文架構.................. 6 第二章 光學低同調顯微技術原理...........7 2.1 干涉原理.................. 7 2.2 光與物質交互作用.............. 9 2.3 低同調干涉理論...............12 第三章 系統架構元件說明與訊號處理介紹...... 17 3.1 光學低同調斷層掃瞄技術架構.........17 3.1.1 光源...................18 3.1.2 平面掃描裝置:掃瞄鏡及其掃瞄原理.....19 3.1.3 縱軸(深度)掃描裝置:步進馬達平移台... 22 3.2 訊號處理..................22 3.2.1 掃瞄步驟.................22 3.2.2 LabVIEW控制和擷取方式..........23 3.2.3 訊號解調變方法..............25 3.3參數解釋..................26 3.3.1 縱向解析力................26 3.3.2 橫向解析力................28 第四章 光學低同調顯微技術架設結果之系統測試及討論31 4.1 同調長度測試................31 4.2 步進馬達精確度測試.............37 4.3 掃瞄鏡組測試................41 4.4 折射率鑑別測試...............44 4.5 掃瞄樣品測試................48 第五章 結論與未來展望.............. 50 參考文獻.....................53 附錄.......................55 圖目錄 圖1.1 相位延遲技術.................. 5 (a)為一般的直接改變光程的設計; ....... 5 (b)利用相位延遲器改變光程差的設計; ..... 5 (c)利用壓電材料改變光程設計。........ 5 圖2-1 空間平面波干涉示意圖。............. 8 圖2-2 光進入物質後的相互作用關係。........... 10 圖2-3 生物體內物質對不同波長的吸收圖。......... 11 圖2-4 麥克森干涉儀-電場示意圖。............ 13 圖3-1 系統架構圖。................. 18 圖3-2 掃瞄鏡組加入物鏡形成一為線性掃瞄。....... 20 (a)掃瞄鏡未轉動時光點位置圖; ........ 20 (b)掃瞄鏡轉動時光點隨之改變圖。....... 20 圖3-3 掃瞄鏡轉動,在焦平面上光線的變化。....... 21 圖3-4 三維空間影像掃瞄順序示意圖。.......... 23 (a)縱切面掃瞄; .............. 23 (b)橫切面掃瞄。.............. 23 圖3-5 希爾伯特轉換求波包流程圖............26 圖3-6 雷利規範可解析程度示意圖。........... 27 (a)可解析; ............... 27 (b)恰可解析; .............. 27 (c)不可解析。............... 27 圖3-7 恰可解析之高斯分佈圖形。............ 28 圖3-8 雷射擴束對物鏡的NA使用情況圖......... 29 圖3-9 雷射擴束器。................. 29 圖3-10 光束經透鏡或物鏡聚焦後光斑大小示意圖。...... 30 圖4-1 麥克森干涉儀架構。.............. 32 圖4-2 輸出電流90mA之干涉圖形轉換波包順序圖。..... 33 (a)輸出電流90mA時,干涉圖形。....... 33 (b)經由希爾伯特轉換後取出之波包圖形。.... 33 (c)經希爾伯特轉換後之波包擬合後的圖形。.... 33 圖4-3(a)輸出電流100mA時,經希爾伯特轉換後之干涉項波包擬合後的圖形。................ 35 (b)輸出電流110mA時,經希爾伯特轉換後之干涉項波包擬合後的圖形。................ 35 (c)輸出電流120mA時,經希爾伯特轉換後之干涉項波包擬合後的圖形。................ 35 (d)輸出電流130mA時,經希爾伯特轉換後之干涉項波包擬合後的圖形。................ 35 (e)輸出電流140mA時,經希爾伯特轉換後之干涉項波包擬合後的圖形。................ 35 圖4-4 不同輸出電流之軸向解析力比較示意圖。....... 37 圖4-5 精確度測試架構圖。............... 38 圖4-6 CCD光點合成圖。................ 39 圖4-7 光點分析圖。.................40 圖4-8 利用塊規作為標準的量測系統圖..........41 圖4-9 掃瞄鏡角度掃瞄測試架構圖。........... 42 圖4-10 電壓0.01V與電壓0.02V的光點位置圖。...... 42 圖4-11電壓值與兩光點間距圖。............. 43 圖4-12 (a)匹配液為1.64的干涉圖形; ......... 45 (b)干涉形成圖............... 45 圖4-13 (a)匹配液為1.52的干涉圖形。......... 46 (b)匹配液為1.54的干涉圖形。......... 46 (c)匹配液為1.57的干涉圖形。......... 46 (d)匹配液為1.58的干涉圖形。......... 46 圖4-14 掃瞄壹元硬幣圖形。.............. 49 圖5-1 掃瞄方式為一步一偵測之概念圖.......... 51 圖5-2 掃瞄方式為一維掃瞄與轉動偵測之概念圖....... 51 附-1(a)準直器正視圖。............... 55 附-1(b)準直器結構圖。............... 55 附-2(a)平行光聚焦示意圖。............. 56 附-2(b)點光源經由透鏡聚成平行光示意圖。....... 56 附-3 光路校準圖。.................. 57 附-4 校準高度圖示。................. 58 附-5 近紅外光耦合架構圖。.............. 59 附-6 共光路光纖耦合架構圖。............. 60 附-7 共光路判斷示意圖。............... 60 附-8 1:1望遠鏡示意圖。............... 61 附-9 調整共焦點示意圖。............... 62 附-10 L2¬¬後焦點調整示意圖。.............. 62 表目錄 表1.1 OCT光源一般的選擇種類............. 4 表3-1 控制流程...................25 表4-1 掃瞄鏡測試數據表............... 43 表4-2 不同折射率所產生的不同反射強度表........ 47

    [1] M. Martin, G. Pomper, PhD, "Molecular imaging:An overview," Academic Radiology, vol. 8, pp. 1141-1153, 2001.
    [2] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., "Optical coherence tomography," Science, vol. 254, pp. 1178-81, 1991.
    [3] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch Ophthalmol, vol. 113, pp. 325-32, 1995.
    [4] M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography of macular holes," Ophthalmology, vol. 102, pp. 748-56, 1995.
    [5] http://www.meditec.zeiss.com/.C125679E0051C774/Contents-
    Fraame/9B7E65DE79E8118041256A700044A6E1
    [6] J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical coherence tomography of the human skin," J Am Acad Dermatol, vol. 37, pp. 958-63, 1997.
    [7] J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, "Optical coherence tomography of the skin," Curr Probl Dermatol, vol. 26, pp. 27-37, 1998.
    [8] E. G. Christoph, K. Hitzenberger, Markus Sticker, Michael Pircher and Adolf F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," OPTICS EXPRESS, vol. 9, 2001.
    [9] G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science, vol. 276, pp. 2037-9, 1997.
    [10] Y. Z. Ding, H Ren, J. S. Nelson, and Zhongping Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," OPTICS EXPRESS, vol. 10, pp. 236-245, 2002.
    [11] J. A. Izatt, M. R. Hee, G. A. Owen, E. A. Swanson, and J. G. Fujumoto "Optical coherence microscopy," Optics Letters, vol. 19, pp. 590-592, 1994.
    [12] P. A. Flourney, "White-light interferometric thickness gauge," Applied Optics, vol. 11, 1972.
    [13] B. P. Unterhuber, B. Hermann, H. Sattmann, and W. Drexler, "Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," OPTICS LETTERS, vol. 28, pp. 905-907, 2003.
    [14] E. Bouma, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," OPTICS LETTERS, vol. 21, pp. 1839-1841, 1996.
    [15] I. J. Hsu, C.R.Deng, C. C. Yang, C. P. Chiang, C. W. Lin, Y. W. Kiang, "Optical coherence tomography using nonlinear optics in fiber for broadband source generation," Optics Communications, vol. 212, pp. 391-396, 2002.
    [16] J. M. Schmitt, "Optical Coherence Tomography (OCT): A Review," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 1205-1215, 1999.
    [17] F. K. Wong, K. C. Chu, J. P. Heritage, A. Dienes, "400-Hz Mechanical Scanning Optical Delay Line," Optics Letters, vol. 18, pp. 558-560, 1993.
    [18] G. J. Tearney, and J. G. Fujimoto, "High speed phase- and group-delay scanning with a grating-based phase control delay line," Optics Letters, vol. 22, pp. 1811-1813, 1997.
    [19] F. Fercher, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography principles and applications," REPORTS ON PROGRESS IN PHYSICS, vol. 66, pp. 239-303, 2003.
    [20] B.E.A. Saleh, M.C. Teich, "Fundamentals of photonics,"pp350-351
    [21] P. T. Christoph, K. Hitzenberger, P. W. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," OPTICS EXPRESS, vol. 11, pp. 2754-2761, 2003.
    [22] http://www.olympusfluoview.com/theory/confocallaserintro.html.
    [23] J.V. Mameren, "Single molecule mechanics of biopolymers:an optical tweezer study," ,2002
    [24] K. Morita, "Applied fourier transform," pp.194-195, 1995

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE