簡易檢索 / 詳目顯示

研究生: 陳建成
Chen, Chien-Cheng
論文名稱: 以化學氣相沉積法在矽(100)上成長高指向立方碳化矽之研究
Growth of Highly Oriented 3C-SiC on Si(100) by Chemical Vapor Deposition
指導教授: 黃振昌
J. Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 立方碳化矽化學氣相沉積法高指向
外文關鍵詞: 3C-SiC, CVD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽(Silicon Carbide)具有寬能隙、高崩潰電壓、高熱傳導係數及高電子漂移速率等優越的性質,在電子元件應用上是相當有潛力的材料,本研究利用射頻感應加熱化學氣相沈積系統 (Radio Frequency Chemical Vapor Deposition System),採三階段成長法,以氫氣為載流氣體,通入矽甲烷、丙烷反應氣體,成功在Si(100)基材上沈積高指向性立方晶型碳化矽(3C-SiC)薄膜。三階段成長分為氫清潔、丙烷碳化與薄膜成長,首先在攝氏900度下,通入氫氣,去除原生氧化層,接著急速升溫至攝氏1250度,丙烷裂解後,碳原子覆蓋在矽基板上,並碳化試片表面矽原子,形成SiC緩衝層,再升溫到攝氏1380度,成長立方碳化矽。由AES、AFM、SEM、TEM、XPS與XRD等儀器分析,證明所成長之薄膜結構為高指向性織構。


    Silicon carbide (SiC) is a promising material in the electronic device application due to its wide band gap, high breakdown voltage, high conductivity and high electron mobility. In this thesis, we have successfully grown highly oriented 3C-SiC thin films on Si(100) substrates by Radio Frequency Chemical Vapor Deposition system (RFCVD), utilizing the three-step growth method in a SiH4-C3H8-H2 mixed gas. The three-step growth consists of hydrogen cleaning, propane carburization and SiC growth. At first, H2 is introduced at 900℃ to remove native oxide. The temperature is then ramped up rapidly to 1250℃ to decompose C3H8. The C atoms cracked from C3H8 are deposited on Si(100) and then form a SiC buffer layer at the surface. At last, the temperature is ramped up to 1380℃ in a mixed gas of SiH4-C3H8-H2 for 3C-SiC growth. The as-grown 3C-SiC thin film is highly oriented, characterized by AES、AFM、SEM、TEM、XPS and XRD analyses.

    中文摘要 I Abstract II 總目錄 III 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 論文架構 2 第二章 文獻回顧 3 2-1碳化矽的結構與命名 3 2-2 碳化矽的材料特性 4 2-2.1電學性質與應用 4 2-2.2熱學性質與應用 5 2-2.3其它性質與應用 6 2-3 碳化矽薄膜的製程方法 6 2-3.1液相磊晶(LPE) 6 2-3.2分子束磊晶(MBE) 6 2-3.3昇華法(Sublimation Epitaxy ) 7 2-3.4氣相磊晶(VPE) 7 2-4 3C-SiC/Si文獻回顧 9 2-5 平面缺陷-疊差、雙晶與APBs 10 2-6 流場/熱場之效應 11 第三章 實驗流程與分析 17 3-1 實驗流程 17 3-2 實驗裝置 18 3-2.1 實驗氣體 18 3-2.2 反應腔體 19 3-2.3 加熱系統 19 3-2.4 真空系統 20 3-3 實驗程序 20 3-3.1 矽基板準備 20 3-3.2 氫處理 21 3-3.3 碳化 22 3-3.4 成長 22 3-4 分析儀器 23 3-4.1 原子力顯微鏡 (AFM) 23 3-4.2 場發射掃描式電子顯微鏡(FESEM) 24 3-4.3 X射線繞射儀(XRD) 24 3-4.4 穿透式電子顯微鏡(TEM) 25 3-4.5 X射線光電子能譜儀(XPS; ESCA) 26 3-4.6 歐傑電子能譜(AES) 26 第四章 高指向性立方碳化矽成長研究討論 32 4-1 在Si(100)上成長碳化矽薄膜之初步研究 32 4-1.1 嘗試文獻之再現性 32 4-1.2 改變碳化時丙烷分壓對成長碳化矽薄膜的影響 33 4-1.3 成長階段碳矽流量比對碳化矽薄膜結晶性之影響 35 4-2 氫氣清潔製程 36 4-3 碳化程序參數之影響 38 4-3.1 碳化溫度 38 4-3.2 碳化濃度 40 4-3.3 碳化時間 41 4-4 成長程序參數之影響 43 4-4.1 成長時流場之效應 43 4-4.2 成長溫度 45 第五章 結論 67 第六章 參考文獻 69

    [1] Kim, H. J., Davis, R. F., Journal of Applied Physics, (1986) 60, 2897.
    [2] 李文鴻, 電子迴遊共振化學氣相沉積碳化矽薄膜之低溫成長的研究, 國立台灣科技大學 (1994).
    [3] Zetterling, C. M. Ed. Process Technology for Silicon Carbide Device, (2002); Vol.
    [4] G.L. Harris, M.G. Spencer, Yang, C. Y., Amorphous and crystalline silicon carbide III and other group IV-IV materials Springer-Verlag: (1992).
    [5] Smith, W. F., Hashemi, J., Foundations of materials science and engineering, McGraw-Hill: (2004).
    [6] Bhatnagar, M., Baliga, B. J., Ieee Transactions on Electron Devices, (1993) 40, 645.
    [7] Callister, W. D., Materials Science and Engineering: An Introduction, John Wiley & Sons: (2002).
    [8] Johnson, E. O., RCA Review, (1965) 26, 163.
    [9] Neudeck, P. G., Larkin, D. J., Starr, J. E., Powell, J. A., Salupo, C. S., Matus, L. G., Ieee Electron Device Letters, (1993) 14, 136.
    [10] Yoshida, S., Sasaki, K., Sakuma, E., Misawa, S., Gonda, S., Applied Physics Letters, (1985) 46, 766.
    [11] Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., Burns, M., Journal of Applied Physics, (1994) 76, 1363.
    [12] Palmour, J. W., Kong, H. S., Davis, R. F., Journal of Applied Physics, (1988) 64, 2168.
    [13] Chelnokov, V. E., Syrkin, A. L., Dmitriev, V. A., Diamond and Related Materials, (1997) 6, 1480.
    [14] Sasaki, K., Sakuma, E., Misawa, S., Yoshida, S., Gonda, S., Applied Physics Letters, (1984) 45, 72.
    [15] Sung, C. M., 工業材料雜誌, (2007) 246, 166.
    [16] Park, Y. S. Ed. SiC Materials and Devices, (1998); Vol. 52.
    [17] Hwang, J. D., Fang, Y. K., Song, Y. J., Yaung, D. N., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, (1995) 34, 1447.
    [18] Chelnokov, V. E., Syrkin, A. L., Materials Science and Engineering B-Solid State Materials for Advanced Technology, (1997) 46, 248.
    [19] Rehder, G., Carreno, M. N. P., Journal of Non-Crystalline Solids, (2006) 352, 1822.
    [20] Chayahara, A., Masuda, A., Imura, T., Osaka, Y., Japanese Journal of Applied Physics Part 2-Letters, (1986) 25, L564.
    [21] Matsunami, H., Physica B, (1993) 185, 65.
    [22] Miyazawa, T., Yoshida, S., Misawa, S., Gonda, S., Ohdomari, I., Applied Physics Letters, (1984) 45, 380.
    [23] Vodakov, Y. A., Mokhov, E. N., USSR No. 403275, France No. 7409089, (1970).
    [24] Konstantinov, A. O., Sublimation growth of SiC, In Properties of SiC, Harris, G. L. Ed. INSPEC: (1996); pp 170.
    [25] Campbell, R. B., Chu, T. L., J. Electrochem. Soc., (1966) 113, 825.
    [26] Jennings, V. L., Sommer, A., Chang, H. C., J. Electrochem. Soc., (1966) 113, 728.
    [27] Matsunami, H., Nishino, S., Odaka, M., Tanaka, T., J. Cryst. Growth, (1975) 31, 72.
    [28] Muench, W. V., Pfaffeneder, I., Thin Solid Films, (1976) 31, 39.
    [29] Lu, P., Edgar, J. H., Glembocki, O. J., Klein, P. B., Glaser, E. R., Perrin, J., Chaudhuri, J., Journal of Crystal Growth, (2005) 285, 506.
    [30] Takahashi, T., Ishida, Y., Tsuchida, H., Kamata, I., Okumura, H., Yoshida, S., Arai, K., Silicon Carbide and Related Materials 2001, Pts 1 and 2, Proceedings, (2002) 389-3, 323.
    [31] Nishino, S., Powell, J. A., Will, H. A., Applied Physics Letters, (1983) 42, 460.
    [32] Nishino, S., Chemical vapor deposition of SiC, In Properties of Silicon Carbide, Harris, G. Ed. INSPEC: (1995); pp 204.
    [33] Larkin, D. J., Mrs Bulletin, (1997) 22, 36.
    [34] Gupta, A., Jacob, C., Progress in Crystal Growth and Characterization of Materials, (2005) 51, 43.
    [35] Muench, W., Kurzinger, W., Pfaffeneder, I., Solid State Electron, (1975) 19, 871.
    [36] Nishino, S., Hazuki, Y., Matsunami, H., Tanaka, T., Journal of the Electrochemical Society, (1980) 127, 2674.
    [37] Addamiano, A., Klein, P. H., Journal of Crystal Growth, (1984) 70, 291.
    [38] Addamiano, A., Sprague, J. A., Applied Physics Letters, (1984) 44, 525.
    [39] Fujiwara, Y., Sakuma, E., Misawa, S., Endo, K., Yoshida, S., Applied Physics Letters, (1986) 49, 388.
    [40] Ishida, Y., Takahashi, T., Okumura, H., Yoshida, S., Sekigawa, T., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, (1997) 36, 6633.
    [41] Chaudhry, M. I., Wright, R. L., Journal of Materials Research, (1990) 5, 1595.
    [42] Li, J. P., Steckl, A. J., Journal of the Electrochemical Society, (1995) 142, 634.
    [43] Liaw, P., Davis, R. F., Journal of the Electrochemical Society, (1985) 132, 642.
    [44] Zheng, N. J., Knipping, U., Tsong, I. S. T., Petuskey, W. T., Kong, H. S., Davis, R. F., Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, (1988) 6, 696.
    [45] Shibahara, K., Nishino, S., Matsunami, H., Applied Physics Letters, (1987) 50, 1888.
    [46] Kong, H. S., Wang, Y. C., Glass, J. T., Davis, R. F., Journal of Materials Research, (1988) 3, 521.
    [47] 陳力俊 Ed. 材料電子顯微鏡學, 國家實驗研究院儀器科技研究中心: (1994); Vol.
    [48] Hurlbut, C. S., Klein, C., Crystal_twinning, In http://en.wikipedia.org/wiki/.
    [49] Nagasawa, H., Yagi, K., Physica Status Solidi B-Basic Research, (1997) 202, 335.
    [50] Smith, M. T., Design And Development Of A Silicon Carbide Chemical Vapor Deposition Reactor, College of Engineering
    University of South Florida (2003).
    [51] Kordina, O., Hallin, C., Henry, A., Bergman, J. P., Ivanov, I., Ellison, A., Son, N. T., Janzen, E., Physica Status Solidi B-Basic Research, (1997) 202, 321.
    [52] Saitoh, H., Kimoto, T., Matsunami, H., Silicon Carbide and Related Materials - 2002, (2002) 433-4, 185.
    [53] 高橋勘次郎, 高週波工業應用技術, 復漢: (1983).
    [54] NDL Ed. 半導體設備見習, National Nano Device Laboratories: (2006); Vol.
    [55] 汪建民 Ed. 材料分析, 中國材料科學學會: (2005); Vol.
    [56] 劉智生, 以矽甲烷/乙炔/ 氫氣的化學氣相沉積系統於矽(100)基材上成長碳化矽之研究, 國立台灣科技大學 (2003).
    [57] 郭正次, 朝春光, 奈米結構材料科學, 全華: (2004).
    [58] Vickerman, J. C., Surface Analysis: the principal techniques, John Wiley& Sons: (1997).
    [59] Steckl, A. J., Li, J. P., Ieee Transactions on Electron Devices, (1992) 39, 64.
    [60] Yuan, C., Steckl, A. J., Loboda, M. J., Applied Physics Letters, (1994) 64, 3000.
    [61] Becourt, N., Cros, B., Ponthenier, J. L., Berjoan, R., Papon, A. M., Jaussaud, C., Applied Surface Science, (1993) 68, 461.
    [62] Mogab, C. J., Leamy, H. J., J. Appl. Phys., (1974) 45, 1075.
    [63] 李志毅, 矽晶基材的碳化緩衝層之成長動力及其後碳化矽結晶薄膜之氣相成長.
    [64] Wang, Y. G., Shah, N., Huffman, G. P., Catalysis Today, (2005) 99, 359.
    [65] Kitabatake, M., Thin Solid Films, (2000) 369, 257.
    [66] 吳泰伯, 許樹恩, x光繞射原理與材料結構分析, 中國材料科學學會: (2004).
    [67] Mendez, D., Aouni, A., Morales, F. M., Pacheco, F. J., Araujo, D., Bustarret, E., Ferro, G., Monteil, Y., Physica Status Solidi a-Applications and Materials Science, (2005) 202, 561.
    [68] Edington, J. W., Practical Electron Microscopy in Materials Science, PHILIPS: (1985).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE