簡易檢索 / 詳目顯示

研究生: 郭 嶽
Kuo, Yue
論文名稱: 自導移動機器車取貨及運輸路徑之最短化分析
Analysis of Shortest Path in Pickup and Delivery for Autonomous Mobile Robot Carts
指導教授: 王培仁
Wang, Pei-Jen
口試委員: 張國文
Chang, Kuo-Wen
劉晉良
Liu, Jinn-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 路徑規劃收發貨問題自導移動機器人
外文關鍵詞: Autonomous Mobile Robot, Path Planning, Pickup and Delivery Route
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電腦科技以及資訊工程之進步,習用自動化操作系統之導入面臨數量飽和問題,必須依靠無人化控制的自主操作系統成為工業自動化新潮流。尤其在耗費人力及業務工作量大之物流產業,必須快速導入人工智能技術以降低營運成本,故自導移動機器車(Autonomous Mobile Robot, 簡稱AMR)成為近幾年發展快速的創新興產業應用。
    為符合AMR在室內工廠的基本工作規格及需求,首先必須具備路徑規劃及行進避障之功能。於具備此功能之基本條件下,再繼續研改及提升AMR之運輸效率,故而取貨路徑規劃及路徑優化成為近期學術界廣泛研究與討論之課題。
    本論文針對AMR取貨路徑與運輸路徑之優化問題,先探討在運輸車於進行取貨及卸載貨物時,必須先規劃並優化分送順序之排程問題,使AMR行走最短路徑並完成運送任務,於行進中考慮於實務環境所面臨之定位導航及避障限制條件,調整及修正理論演算之取貨與傳遞法則,經實驗驗證後,結果證明可應用於實務之自導移動機器車之室內無人運輸應用,並可預期產生優化路徑之成果及效益。


    With the leaps in computer and information technology, automatic guided vehicles are increasingly saturated in the shop floor together with un-human autonomous operation being required in industrial automation. It is mostly noted that the logistics industry has to circumvent the large manpower and workloads problems by quick implementation of artificial intelligence technology for reduction in operation costs. Therefore, Autonomous Mobile Robot systems have become an innovative and essential application in the academia in recent years. To meet the basic working specifications and requirements of AMR systems in production factories, they must be built with path planning and obstacle avoidance functions as the standard features. Based on these functions, it is necessary to improve and enhance transportation efficiency of the AMR systems.
    The objective of the thesis is to focus on the optimization of pickup and delivery with prior path planning and optimization so that the AMR can make the shortest path in the delivery task with navigational positioning and obstacle avoiding functions on the route. The experimental verifications of an AMR cart is to demonstrate the feasibility and potential implementation with analysis in the optimization results on the shop floor.

    摘 要--------------------------------------I Abstract----------------------------------II 誌 謝-------------------------------------III 目錄--------------------------------------IV 圖目錄-------------------------------------VIII 表目錄-------------------------------------XII 第一章 序論--------------------------------1 1-1 研究背景---------------------------------1 1-2 研究目的---------------------------------1 1-3 文獻回顧---------------------------------2 1-3-1 基於相機之SLAM技術----------------------2 1-3-2 基於光達之SLAM技術----------------------4 1-3-3 路徑規劃分析----------------------------5 1-3-4 車輛路線問題----------------------------8 第二章 基礎理論介紹---------------------------12 2-1 機器人操作系統框架------------------------12 2-1-1 ROS Topic------------------------------12 2-1-2 ROS Service----------------------------13 2-1-3 ROS Action-----------------------------13 2-2 G-Mapping--------------------------------14 2-2-1 Rao-Blackwellized Particle濾波演算法----14 2-2-2 提案分佈計算方式-------------------------16 2-2-3 權重收斂速度----------------------------18 2-3 路徑規劃演算法-----------------------------19 2-3-1 Dijkstra演算法--------------------------19 2-3-2 A*演算法--------------------------------19 2-4 動態視窗法--------------------------------20 2-4-1 動力學方程模型---------------------------20 2-4-2 速度採樣--------------------------------22 2-4-3 求最優解--------------------------------23 2-4-4 平滑處理--------------------------------23 2-5 收發貨問題---------------------------------24 2-6 單純形法----------------------------------26 2-6-1 線性問題標準型---------------------------27 2-6-2 求出初始基可行解-------------------------27 2-6-3 判斷最優解-------------------------------28 2-6-4 換基迭代---------------------------------29 2-7 對偶理論-----------------------------------31 2-7-1 弱對偶定理--------------------------------31 2-7-2 強對偶定理--------------------------------32 2-7-3 互補鬆弛性定理----------------------------34 2-7-4 影子價格----------------------------------34 2-8 行生成法------------------------------------35 2-8-1 行生成法----------------------------------35 2-8-2 列生成法----------------------------------37 2-9 混和整數規劃問題-----------------------------37 2-9-1 分支定界法--------------------------------38 2-9-2 割平面法----------------------------------39 2-9-3 啟發式方法--------------------------------40 第三章 實驗驗證策略------------------------------52 3-1 導航策略------------------------------------52 3-1-1 地圖建構數據------------------------------52 3-1-2 定位方法分析------------------------------53 3-1-3 全域規劃----------------------------------54 3-1-4 區域規劃----------------------------------54 3-1-5 Move Base與Action架構---------------------55 3-2 SCIP求解器----------------------------------57 3-3 收發貨問題及導航應用策略----------------------59 第四章 實驗驗證結果及分析-------------------------66 4-1 前言----------------------------------------66 4-2 實驗設備-------------------------------------66 4-3 虛擬環境性能測試------------------------------67 4-3-1 演算法計算性能測試--------------------------68 4-3-2 Move Base行動軌跡測試-----------------------69 4-3-3 規劃效率分析--------------------------------70 4-4 AMR系統軟體架設-------------------------------72 4-5 驗證場景--------------------------------------73 4-5-1 實際場景建圖分析及決策-----------------------73 4-5-2 動態避障測試--------------------------------74 4-5-3 收發貨目標最佳化及導航測試-------------------75 第五章 結論與未來工作------------------------------84 5-1 結論------------------------------------------84 5-2 未來展望--------------------------------------85 參考文獻------------------------------------------87

    [1] Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007), “ MonoSLAM: Real-time single camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052-1067.
    [2] Smith, R. C., & Cheeseman, P. (1986), “ On the representation and estimation of spatial uncertainty”, The international journal of Robotics Research, 5(4), 56-68.
    [3] Leonard, J. J., and Durrant-Whyte, H. F. (1991, November), “Simultaneous map building and localization for an autonomous mobile robot”, In IROS (Vol. 3, pp. 1442-1447).
    [4] Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2013), ”Rao-Blackwellised particle filtering for dynamic Bayesian networks,” arXiv preprint arXiv:1301.3853.
    [5] Grisetti, G., Stachniss, C., and Burgard, W. (2007),” Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE Transactions on Robotics, 23(1), 34-46.
    [6] Engel, J., Schöps, T., & Cremers, D. (2014, September), ”LSD-SLAM: Large-scale direct monocular SLAM,” In European Conference on Computer Vision, pp. 834-849, Springer, Cham.
    [7] https://vision.in.tum.de/research/vslam/lsdslam 網頁
    [8] Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE transactions on robotics, 31(5), 1147-1163.
    [9] https://blog.csdn.net/ei1990/article/details/78313548 網頁
    [10] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015), ”ORB-SLAM: a versatile and accurate monocular SLAM system”, IEEE Transactions on Robotics, 31(5), 1147-1163.
    [11] Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., and Jurišica, L. (2014), “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, 96, 59-69.
    [12] https://www.itread01.com/content/1547359053.html 網頁
    [13] Nosrati, M., Karimi, R., and Hasanvand, H. A. (2012), “Investigation of the*(star) search algorithms: Characteristics, methods and approaches,” World Applied Programming, 2(4), 251-256.
    [14] Stentz, A. (1997), “Optimal and efficient path planning for partially known environments,” In Intelligent Unmanned Ground Vehicles, pp. 203-220, Springer, Boston, MA.
    [15] Koenig, S., and Likhachev, M. (2001), ”Incremental a.” Advances in neural information processing systems, 14, pp.1539-1546.
    [16] Koenig, S., and Likhachev, M. (2002). D* lite. Association for the Advancement of Artificial Intelligence/Innovative Applications of Artificial Intelligence, 15.
    [17] Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23-33.
    [18] Zheng, K. (2016). ROS Navigation Tuning Guide.
    [19] Berthold, T. (2006). Primal heuristics for mixed integer programs.
    [20] https://www.scipopt.org/ 網頁
    [21] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... & Ng, A. Y. (2009, May). ROS: an open-source Robot Operating System. In ICRA workshop on open source software (Vol. 3, No. 3.2, p. 5).
    [22] http://wiki.ros.org/ROS/Tutorials 網頁
    [23] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269-271.
    [24] Battarra, M., Cordeau, J. F., & Iori, M. (2014). Chapter 6: pickup-and-delivery problems for goods transportation. In Vehicle Routing: Problems, Methods, and Applications, Second Edition (pp. 161-191). Society for Industrial and Applied Mathematics.
    [25] Hansen, P., Mladenović, N., & Urošević, D. (2006). Variable neighborhood search and local branching. Computers & Operations Research, 33(10), 3034-3045.
    [26] Rothberg, E. (2007). An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on Computing, 19(4), 534-541.
    [27] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations research, 46(3), 316-329.
    [28] Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
    [29] Dantzig, G. B. (1948). Programming in a linear structure. Washington, DC.
    [30] Ficken, F. A. (2015). The simplex method of linear programming. Courier Dover Publications.
    [31] Banciu, M. (2011). Dual simplex. In Wiley Encyclopedia of Operations Research and Management Science. Wiley.
    [32] Savelsbergh, M. W., and Sol, M. (1995), “The general pickup and delivery problem,“ Transportation Science, 29(1), pp.17-29.
    [33] Lucena, A., & Beasley, J. E. (1996). Branch and cut algorithms. Advances in linear and integer programming, 4, 187-221.
    [34] Xu, H., Chen, Z. L., Rajagopal, S., and Arunapuram, S. (2003), ”Solving a practical pickup and delivery problem,” Transportation Science, 37(3), 347-364.
    [35] Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., & Soumis, F. (2002). VRP with Pickup and Delivery. The vehicle routing problem, 9, 225-242.
    [36] Muter, I., Birbil, Ş. İ., & Bülbül, K. (2013). Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows. Mathematical Programming, 142(1), 47-82.
    [37] Boyd, S., & Mattingley, J. (2007). Branch and bound methods. Notes for EE364b, Stanford University, 2006-07.
    [38] 葉松林,2007,解模糊關係方程式之改良演算法及非線性最佳化問題應用,國立臺灣師範大學電機工程學系碩士論文
    [39] http://library.isr.ist.utl.pt/docs/roswiki/hector_slam(2f)Tutorials(2f)SettingUpForYourRobot.html 網頁

    QR CODE