研究生: |
任君宇 Chun-Yu Jen |
---|---|
論文名稱: |
台灣眼鏡蛇心臟毒素之胞吞機制及其對心肌細胞之毒性影響 Role of Taiwan cobra cardiotoxins internalization on cardiomyocyte H9C2 cells cytotoxicity |
指導教授: |
吳文桂
Wen-guey Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 心臟毒素 、細胞凋亡 、胞吞機制 |
外文關鍵詞: | cardiotoxin, apoptosis, Endocytosis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Cardiotoxins (CTXs), a major component of snake venom from Taiwan cobra Naja atra, are structurally homologues beta-sheet basic polypeptide, each types of CTXs exhibit different specificity toward different targets. CTX A3, CTXA2 and CTX A4 are interesting because of their strong ability and discrepancies in endocytosis and cytotoxicity. Besides CTX A2 and CTX A4 are dynamin-dependent and CTX A3 is dynamin-independent, Cholesterol also participates in endocytosis of CTXs. Cholesterol depletion thinning membrane facilitates CTX A3 to form pores. However cholesterol incorporation accelerates CTX A2 and CTX A4 to bind lipids and block CTX A3 to form pores. All three CTXs can dose-dependently decrease H9C2 viability and induce time-dependent apoptosis through receptor-mediated caspase-8 and mitochondrial-damaged caspase-9 pathways. Moreover CTXs induce calcium released from ER, but its function is still unknown because of inactivity of caspase-12. Although CTX A2 and CTX A4 differ only at the first amino acid residue, CTX A4 is more toxic and internalized than CTX A2. Moreover CTX A3 has a hydrophobic loop-2 binding phospholipids and breaks membrane, which is why CTX A3 is the most toxic and internalized for H9C2 cells. Most exciting result is observed that endocytosis is essential for toxicity. As blocking dynamin with dynasore, the results show that cytotoxicity of CTX A2 and CTX A4 was inhibited.
台灣眼鏡蛇毒蛋白主要成分中含有多種心臟毒素,各心臟毒素彼此結構相似且皆為beta-褶板正電性多肽;但各心臟毒素對於細胞的目標專一性不盡相同。由於心臟毒素中的A2、A3、A4能在短時間內進入細胞且產生毒性,故對心臟毒素A2、A3、A4之胞吞路徑與如何產生毒性感興趣。比較三者間進入細胞產生毒性的能力,發現A3最強,而A4次之。這有可能是進入細胞時,A3會造成膜穿孔而A2、A4須經由發動蛋白調控路徑有關。再者,細胞膜中的膽固醇含量亦會調控心臟毒素的胞吞作用,減少膽固醇有利於A3在膜上穿孔;而增加膽固醇會有效抑制A3穿孔,亦會促進A2及A4的胞吞。研究發現心臟毒素進入細胞後會攻擊粒線體及刺激內質網釋放鈣離子;故進一步觀察到caspase-8、9、12受心臟毒素攻擊而活化,進而對心肌細胞造成細胞凋亡。
Akiyama, T., J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, and Y. Fukami, 1987, Genistein, a specific inhibitor of tyrosine-specific protein kinases: J Biol Chem, v. 262, p. 5592-5.
Brown, D. A., and E. London, 1998, Functions of lipid rafts in biological membranes: Annu Rev Cell Dev Biol, v. 14, p. 111-36.
Chen, K. C., Y. L. Chiou, P. H. Kao, S. R. Lin, and L. S. Chang, 2008, Taiwan cobra cardiotoxins induce apoptotic death of human neuroblastoma SK-N-SH cells mediated by reactive oxygen species generation and mitochondrial depolarization: Toxicon, v. 51, p. 624-34.
Chen, K. C., P. H. Kao, S. R. Lin, and L. S. Chang, 2007, The mechanism of cytotoxicity by Naja naja atra cardiotoxin 3 is physically distant from its membrane-damaging effect: Toxicon, v. 50, p. 816-24.
Chien, K. Y., C. M. Chiang, Y. C. Hseu, A. A. Vyas, G. S. Rule, and W. Wu, 1994, Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions: J Biol Chem, v. 269, p. 14473-83.
Chien, K. Y., W. N. Huang, J. H. Jean, and W. G. Wu, 1991, Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues: J Biol Chem, v. 266, p. 3252-9.
Earnshaw, W. C., 1999, Apoptosis. A cellular poison cupboard: Nature, v. 397, p. 387, 389.
Echarri, A., O. Muriel, and M. A. Del Pozo, 2007, Intracellular trafficking of raft/caveolae domains: insights from integrin signaling: Semin Cell Dev Biol, v. 18, p. 627-37.
Efremov, R. G., P. E. Volynsky, D. E. Nolde, P. V. Dubovskii, and A. S. Arseniev, 2002, Interaction of cardiotoxins with membranes: a molecular modeling study: Biophys J, v. 83, p. 144-53.
Feofanov, A. V., G. V. Sharonov, M. V. Astapova, D. I. Rodionov, Y. N. Utkin, and A. S. Arseniev, 2005, Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage: Biochem J, v. 390, p. 11-8.
Ferri, K. F., and G. Kroemer, 2001, Organelle-specific initiation of cell death pathways: Nat Cell Biol, v. 3, p. E255-63.
Fesik, S. W., and Y. Shi, 2001, Structural biology. Controlling the caspases: Science, v. 294, p. 1477-8.
Fletcher, J. E., and F. H. Lizzo, 1987, Contracture induction by snake venom cardiotoxin in skeletal muscle from humans and rats: Toxicon, v. 25, p. 1003-10.
Forouhar, F., W. N. Huang, J. H. Liu, K. Y. Chien, W. G. Wu, and C. D. Hsiao, 2003, Structural basis of membrane-induced cardiotoxin A3 oligomerization: J Biol Chem, v. 278, p. 21980-8.
Glebov, O. O., N. A. Bright, and B. J. Nichols, 2006, Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells: Nat Cell Biol, v. 8, p. 46-54.
Harvey, A. L., and E. Karlsson, 1982, Protease inhibitor homologues from mamba venoms: facilitation of acetylcholine release and interactions with prejunctional blocking toxins: Br J Pharmacol, v. 77, p. 153-61.
Ho, C. L., C. Y. Lee, and H. H. Lu, 1975, Electrophysiological effects of cobra cardiotoxin on rabbit heart cells: Toxicon, v. 13, p. 437-46.
Huang, J. L., and W. R. Trumble, 1991, Cardiotoxin from cobra venom affects the Ca-Mg-ATPase of cardiac sarcolemmal membrane vesicles: Toxicon, v. 29, p. 31-41.
Huang, W. N., S. C. Sue, D. S. Wang, P. L. Wu, and W. G. Wu, 2003, Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach: Biochemistry, v. 42, p. 7457-66.
Idone, V., C. Tam, J. W. Goss, D. Toomre, M. Pypaert, and N. W. Andrews, 2008, Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis: J Cell Biol, v. 180, p. 905-14.
Ilangumaran, S., and D. C. Hoessli, 1998, Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane: Biochem J, v. 335 ( Pt 2), p. 433-40.
Kim, P. K., S. Y. Park, P. P. Koty, Y. Hua, J. D. Luketich, and T. R. Billiar, 2003, Fas-associating death domain protein overexpression induces apoptosis in lung cancer cells: J Thorac Cardiovasc Surg, v. 125, p. 1336-42.
Kreda, S. M., L. Seminario-Vidal, C. Heusden, and E. R. Lazarowski, 2008, Thrombin-promoted release of UDP-glucose from human astrocytoma cells: Br J Pharmacol, v. 153, p. 1528-37.
Krieghoff, E., K. Milovic-Holm, and T. G. Hofmann, 2007, FLASH meets nuclear bodies: CD95 receptor signals via a nuclear pathway: Cell Cycle, v. 6, p. 771-5.
Kroemer, G., L. Galluzzi, and C. Brenner, 2007, Mitochondrial membrane permeabilization in cell death: Physiol Rev, v. 87, p. 99-163.
Lee, S. C., H. H. Guan, C. H. Wang, W. N. Huang, S. C. Tjong, C. J. Chen, and W. G. Wu, 2005, Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3: J Biol Chem, v. 280, p. 9567-77.
Mayor, S., and R. E. Pagano, 2007, Pathways of clathrin-independent endocytosis: Nat Rev Mol Cell Biol, v. 8, p. 603-12.
Nakagawa, T., H. Zhu, N. Morishima, E. Li, J. Xu, B. A. Yankner, and J. Yuan, 2000, Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta: Nature, v. 403, p. 98-103.
Nakanishi, K., N. Dohmae, and N. Morishima, 2007, Endoplasmic reticulum stress increases myofiber formation in vitro: Faseb J, v. 21, p. 2994-3003.
Nankoe, S. R., and S. Sever, 2006, Dynasore puts a new spin on dynamin: a surprising dual role during vesicle formation: Trends Cell Biol, v. 16, p. 607-9.
Patel, H. V., A. A. Vyas, K. A. Vyas, Y. S. Liu, C. M. Chiang, L. M. Chi, and W. Wu, 1997, Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action: J Biol Chem, v. 272, p. 1484-92.
Pelham, H. R., 1991, Multiple targets for brefeldin A: Cell, v. 67, p. 449-51.
Philchenkov, A., 2004, Caspases: potential targets for regulating cell death: J Cell Mol Med, v. 8, p. 432-44.
Riedl, S. J., and Y. Shi, 2004, Molecular mechanisms of caspase regulation during apoptosis: Nat Rev Mol Cell Biol, v. 5, p. 897-907.
Roberg, K., U. Johansson, and K. Ollinger, 1999, Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress: Free Radic Biol Med, v. 27, p. 1228-37.
Rothberg, K. G., Y. S. Ying, B. A. Kamen, and R. G. Anderson, 1990, Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate: J Cell Biol, v. 111, p. 2931-8.
Schutze, S., V. Tchikov, and W. Schneider-Brachert, 2008, Regulation of TNFR1 and CD95 signalling by receptor compartmentalization: Nat Rev Mol Cell Biol.
Shankar, S., I. Siddiqui, and R. K. Srivastava, 2007, Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells: Mol Cell Biochem, v. 304, p. 273-85.
Shogomori, H., and A. H. Futerman, 2001, Cholesterol depletion by methyl-beta-cyclodextrin blocks cholera toxin transport from endosomes to the Golgi apparatus in hippocampal neurons: J Neurochem, v. 78, p. 991-9.
Soldati, T., and M. Schliwa, 2006, Powering membrane traffic in endocytosis and recycling: Nat Rev Mol Cell Biol, v. 7, p. 897-908.
Stossel, T. P., 1977, Phagocytosis. Clinical disorders of recognition and ingestion: Am J Pathol, v. 88, p. 741-51.
Subtil, A., I. Gaidarov, K. Kobylarz, M. A. Lampson, J. H. Keen, and T. E. McGraw, 1999, Acute cholesterol depletion inhibits clathrin-coated pit budding: Proc Natl Acad Sci U S A, v. 96, p. 6775-80.
Sue, S. C., J. R. Brisson, S. C. Chang, W. N. Huang, S. C. Lee, H. C. Jarrell, and W. Wu, 2001, Structures of heparin-derived disaccharide bound to cobra cardiotoxins: context-dependent conformational change of heparin upon binding to the rigid core of the three-fingered toxin: Biochemistry, v. 40, p. 10436-46.
Sun, J. J., and M. J. Walker, 1986, Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue: Toxicon, v. 24, p. 233-45.
Teng, C. M., W. Jy, and C. Ouyang, 1984, Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation: Toxicon, v. 22, p. 463-70.
Tsai, C. H., S. H. Yang, C. M. Chien, M. C. Lu, C. S. Lo, Y. H. Lin, X. W. Hu, and S. R. Lin, 2006, Mechanisms of cardiotoxin lll-induced apoptosis in human colorectal cancer colo205 cells: Clin Exp Pharmacol Physiol, v. 33, p. 177-82.
Ungewickell, E. J., and L. Hinrichsen, 2007, Endocytosis: clathrin-mediated membrane budding: Curr Opin Cell Biol, v. 19, p. 417-25.
Vincent, J. P., H. Schweitz, R. Chicheportiche, M. Fosset, M. Balerna, M. C. Lenoir, and M. Lazdunski, 1976, Molecular mechanism of cardiotoxin action on axonal membranes: Biochemistry, v. 15, p. 3171-5.
Vyas, K. A., H. V. Patel, A. A. Vyas, and W. Wu, 1998, Glycosaminoglycans bind to homologous cardiotoxins with different specificity: Biochemistry, v. 37, p. 4527-34.
Wang, Z. B., Y. Q. Liu, and Y. F. Cui, 2005, Pathways to caspase activation: Cell Biol Int, v. 29, p. 489-96.
Wu, P. L., S. C. Lee, C. C. Chuang, S. Mori, N. Akakura, W. G. Wu, and Y. Takada, 2006, Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family: J Biol Chem, v. 281, p. 7937-45.
Yang, S. H., C. M. Chien, L. S. Chang, and S. R. Lin, 2007a, Involvement of c-jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by cardiotoxin III (Naja naja atra) in K562 leukemia cells: Toxicon, v. 49, p. 966-74.
Yang, S. H., C. M. Chien, M. C. Lu, Y. H. Lin, X. W. Hu, and S. R. Lin, 2006, Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells: Exp Mol Med, v. 38, p. 435-44.
Yang, S. H., C. M. Chien, M. C. Lu, Y. J. Lu, Z. Z. Wu, and S. R. Lin, 2005a, Cardiotoxin III induces apoptosis in K562 cells through a mitochondrial-mediated pathway: Clin Exp Pharmacol Physiol, v. 32, p. 515-20.
Yang, S. H., M. C. Lu, C. M. Chien, C. H. Tsai, Y. J. Lu, T. C. Hour, and S. R. Lin, 2005b, Induction of apoptosis in human leukemia K562 cells by cardiotoxin III: Life Sci, v. 76, p. 2513-22.
Yang, S. H., C. H. Tsai, M. C. Lu, Y. N. Yang, C. M. Chien, S. F. Lin, and S. R. Lin, 2007b, Effects of cardiotoxin III on expression of genes and proteins related to G2/M arrest and apoptosis in K562 cells: Mol Cell Biochem, v. 300, p. 185-90.
Zhang, X. D., S. K. Gillespie, and P. Hersey, 2004, Staurosporine induces apoptosis of melanoma by both caspase-dependent and -independent apoptotic pathways: Mol Cancer Ther, v. 3, p. 187-97.