簡易檢索 / 詳目顯示

研究生: 魏士淵
Wei, Shih-Yuan
論文名稱: 以共濺鍍方式製備氧化鋅鎂薄膜做為銅銦鎵硒無鎘緩衝層之研究
Study of Co-Sputtered Zn1-XMgXO as Cd-Free Buffer Layer on Cu(In,Ga) Se2 Solar Cell
指導教授: 林樹均
Lin, Su-Jien
賴志煌
Lai, Chih-Huang
口試委員: 林樹均
賴志煌
闕郁倫
施文傑
羅文勳
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 銅銦鎵硒緩衝層氧化鎂鋅
外文關鍵詞: CIGS, buffer layer, ZMO, ZnMgO, Zn1-xMgxO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cu(In,Ga)Se2 (CIGS)薄膜型太陽能電池以高效率聞名,並且在近幾年內已被廣泛的討論,其最高效率則是以硫化鎘(CdS)作為緩衝層。基於鎘對於環境以及人體都有不好的影響,無鎘緩衝層的研究也隨之而生,例如氧化鎂鋅 (Zn1-XMgXO)、硫化鋅 (ZnS)以及硫化銦 (InS)。本研究將採取共濺鍍的方式,並且著重於不同鎂摻雜來源(Mg, MgO)所鍍製出的氧化鎂鋅薄膜,對其薄膜性質以及應用在CIGS太陽能電池無鎘緩衝層的效率表現影響。
    本研究將採用紫外-可見光譜、 X光繞射、X光光電子能譜儀、歐傑電子能譜儀、掃描式電子顯微鏡以及霍爾量測來分析其薄膜性質,並且使用光電流-電壓、暗電流電-電壓、電容-電壓以及外部量子效應來量測太陽能電池光電轉換效率表現。利用Mg靶材共鍍的薄膜其電阻率明顯較低,並且在太陽能電池表現上也較好。


    摘要 1 誌謝 II 目錄 III 圖表目錄 V 第一章、 簡介 1 1-1. 太陽能電池材料(absorption layer)的選擇 1 1-2. CIGS太陽能電池結構 3 1-3. 緩衝層(buffer layer) 4 1-3-1. 緩衝層介紹 4 1-3-2. 緩衝層材料選擇 6 1-4. 研究動機與目的 7 第二章、 文獻回顧 8 2-1. Zn1-XMgXO的發展 10 2-2. Light soaking effect 12 2-2-1. Light soaking effect與 conduction band offset 的關係 12 2-2-2. Drive-level capacitance profiling (DLCP)量測 13 2-2-3. 介穩態缺陷 (metastable defect) 14 2-3. 載子復合 (recombination) 16 2-3-1. 退火效應(Annealing effect) 16 2-3-2. Time-Resolved Photoluminescence (TRPL) 17 2-3-3. 載子復合活化能 (activation energy of recombination, Ea) 18 第三章、 實驗方法 20 3-1. 試片準備 20 3-2. 薄膜鍍製 20 3-3. 分析儀器 22 3-3-1. X-Ray繞射分析儀 (x-ray diffraction, XRD) 22 3-3-2. 紫外-可見光光譜儀(UV-visible Spectroscopy) 23 3-3-3. 奈米級歐傑電子能譜儀 (auger electron nanoscope) 24 3-3-4. 兩點探針電性量測系統 25 3-3-5. 太陽光模擬器(solar simulator) 25 3-3-6. 外部量子轉效應量測儀(external quantum effciency,EQE) 26 3-3-7. 霍爾量測與Van der Pauw 26 3-3-8. X-Ray 光電子能譜儀 (x-ray photoelectron spectroscopy,XPS) 27 3-3-9. 場發射掃描式電子顯微鏡(FESEM,SEM ) 27 第四章、 實驗結果與討論 28 4-1. Zn1-XMgXO (ZMO) 薄膜性質探討 28 4-1-1. 穿透率與能隙 28 4-1-2. X-ray 繞射分析(x-ray diffraction, XRD) 31 4-1-3. 奈米級歐傑電子能譜分析 (auger electron nanoscope, AES) 38 4-1-4. Van der Pauw, 電阻率分析 41 4-1-5. X-raye光電子能譜分析 44 (x-ray photoelectron spectroscopy, XPS) 44 4-1-6. 掃描式電子顯微鏡分析 (scanning electron microscope, SEM) 46 4-1-7. 薄膜性質分析總結 48 4-2. CIGS太陽能電池光電轉換效率探討 50 4-2-1. 暗電流電壓量測 (dark I-V) 50 4-2-2. 電容電壓量測 (C-V) -載子濃度以及空乏區寬度 53 4-2-3. 光電流電壓量測 (light I-V) 55 4-2-4. 外部量子效率 (external quantum efficiency, EQE) 58 4-2-5. 光電轉換效率討論總結 60 第五章、 未來展望 61 參考文獻 62

    [1] “美國再生能源實驗室NREL.”
    [2] J. Nelson, “The physics of solar cells,” 2003, p. 214.
    [3] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, “19•9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81•2% fill factor,” Progress in Photovoltaics: Research and Applications, vol. 16, May. 2008, pp. 235-239.
    [4] M.A. Green, “Solar cells : operating principles, technology and system applications.”
    [5] R.A. Mickelsen, W.S. Chen, Y.R. Hsiao, and V.E. Lowe, “Polycrystalline thin-film CuInSe2/CdZnS solar cells,” IEEE Transactions on Electron Devices, vol. 31, May. 1984, pp. 542-546.
    [6] T. Nakada, K. Migita, and S. Niki, “Microstructural Characterization for Sputter-Deposited CuInSe2 Films and Photovoltaic Devices,” Japanese Journal of Applied Physics, vol. 34, Sep. 1995, pp. 4715-4721.
    [7] D.C. Olson, S.E. Shaheen, M.S. White, W.J. Mitchell, M.F. a M. van Hest, R.T. Collins, and D.S. Ginley, “Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells,” Advanced Functional Materials, vol. 17, Jan. 2007, pp. 264-269.
    [8] T. Minemoto, Y. Hashimoto, T. Satoh, T. Negami, H. Takakura, and Y. Hamakawa, “Cu(In,Ga)Se solar cells with controlled conduction band offset of window/Cu(In,Ga)Se layers,” Journal of Applied Physics, vol. 89, 2001, p. 8327.
    [9] M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer, and a Tiwari, “Low-cost CIGS solar cells by paste coating and selenization,” Thin Solid Films, vol. 480-481, Jun. 2005, pp. 486-490.
    [10] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, and H. Koinuma, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Applied Physics Letters, vol. 72, 1998, pp. 2466-2468.
    [11] T. Minemoto, H. Hori, and H. Takakaura, “Light soaking effect on photocurrent collection in (Zn,Mg)O/Cu(In,Ga)Se 2 solar cells,” Physica Status Solidi (C), vol. 6, May. 2009, pp. 1225-1228.
    [12] B.V.O.N. Roedern and G.H. Bauer, “Material requirement for buffer layers used to obtain solar cells with high open circuit voltage,” MaterialsResearch Society, vol. 557, 1996, pp. 761-766.
    [13] S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, “Cu(InGa)Se 2 Thin-film Solar Cells with High Resistivity ZnO Buffer Layers Deposited by Atomic Layer Deposition,” Japanese Journal of Applied Physics, vol. 38, 1999, pp. 4989-4992.
    [14] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation,” Solar Energy Materials and Solar Cells, vol. 67, Mar. 2001, pp. 83-88.
    [15] H. Hori, K. Tanaka, Y. Oda, T. Minemoto, and H. Takakura, “Metastability of Zn1-xMgxO/Cu(In,Ga)Se2 solar cells with different conduction band offset values,” Journal of Crystal Growth, vol. 311, Jan. 2009, pp. 727-730.
    [16] J.T. Heath, “Bulk and metastable defects in CuIn 1-xGaxSe2 thin films using drive-level capacitance profiling,” Journal of Applied Physics, vol. 95, 2004, p. 1000.
    [17] S. Lany and A. Zunger, “Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex,” Journal of Applied Physics, vol. 100, 2006, p. 113725.
    [18] S. Shimakawa, Y. Hashimoto, S. Hayashi, T. Satoh, and T. Negami, “Annealing effects on Zn1-xMgxO/CIGS interfaces characterized by ultraviolet light excited time-resolved photoluminescence,” Solar Energy Materials and Solar Cells, vol. 92, Sep. 2008, pp. 1086-1090.
    [19] U. Malm, J. Malmstrom, C. Platzerbjorkman, and L. Stolt, “Determination of dominant recombination paths in Cu(In,Ga)Se thin-film solar cells with ALD/ZnO buffer layers,” Thin Solid Films, vol. 480-481, Jun. 2005, pp. 208-212.
    [20] K. Tanaka, T. Minemoto, and H. Takakura, “Analysis of heterointerface recombination by Zn1−xMgxO for window layer of Cu(In,Ga)Se2 solar cells,” Solar Energy, vol. 83, Apr. 2009, pp. 477-479.
    [21] T. Torndahl, C. Platzer-Bjorkman, J. Kessler, and M. Edoff, “Atomic layer deposition of Zn1-xMgxO buffer layers for Cu(In,Ga)Se2 solar cells,” Progress in Photovoltaics: Research and Applications, vol. 15, May. 2007, pp. 225-235.
    [22] M.X. Qiu, Z.Z. Ye, H.P. He, Y.Z. Zhang, X.Q. Gu, L.P. Zhu, and B.H. Zhao, “Effect of Mg content on structural, electrical, and optical properties of Li-doped Zn1-xMgxO thin films,” Applied Physics Letters, vol. 90, 2007, p. 182116.
    [23] C. Choi and S. Kim, “Effects of post-annealing temperature on structural, optical, and electrical properties of ZnO and ZnMgO films by reactive RF magnetron sputtering,” Journal of Crystal Growth, vol. 283, Sep. 2005, pp. 170-179.
    [24] X. Zhang, X. Li, T. Chen, J. Bian, and C. Zhang, “Structural and optical properties of ZnMgO thin films deposited by ultrasonic spray pyrolysis,” Thin Solid Films, vol. 492, Dec. 2005, pp. 248-252.
    [25] Http://www.engr.sjsu.edu/ellingham/page3.php, “Ellingham Diagram.”
    [26] D. Hariskos, B. Fuchs, R. Menner, N. Naghavi, C. Hubert, D. Lincot, and M. Powalla, “The Zn(S,O,OH)/ZnMgO buffer in thin-film Cu(In,Ga)(Se,S) 2 -based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In,Ga)Se 2 solar cells,” Progress in Photovoltaics: Research and Applications, vol. 17, Nov. 2009, pp. 479-488.
    [27] Http://www.lasurface.com/database/elementxps.php?bib=150, “XPS data base.”
    [28] J.V. Li, X. Li, Y. Yan, C.-S. Jiang, W.K. Metzger, I.L. Repins, M. a Contreras, and D.H. Levi, “Influence of sputtering a ZnMgO window layer on the interface and bulk properties of Cu(In,Ga)Se2 solar cells,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 27, 2009, p. 2384.
    [29] J. Marlein, K. Decock, and M. Burgelman, “Analysis of electrical properties of CIGSSe and Cd-free buffer CIGSSe solar cells,” Thin Solid Films, vol. 517, Feb. 2009, pp. 2353-2356.
    [30] W.K. Metzger, I.L. Repins, and M.A. Contreras, “Long lifetimes in high-efficiency Cu(In,Ga)Se solar cells,” Applied Physics Letters, vol. 93, 2008, p. 022110.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE