簡易檢索 / 詳目顯示

研究生: 林瑀宏
Yu-Hung Lin
論文名稱: 以過濾式陰極電弧電漿系統合成摻雜氟及氮之非晶質碳膜對結構與物理特性影響之研究
Fluorine and nitrogen doping effects on the structures and physical properties of amorphous carbon film synthesized by filtered cathodic arc plasma system
指導教授: 施漢章
Han C. Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 107
中文關鍵詞: 過濾式陰極電弧電漿系統非晶質碳類鑽碳非晶質碳氮氟薄膜
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,我們是以CF4和N2作為前驅物並利用固態石墨靶(碳元素純度高達99.999%)作為陰極材料,在過濾式陰極電弧電漿系統合成非晶質碳材薄膜。其中我們藉由改變氣體分子的流量,並利用X光光電子能譜(XPS)來觀察此非晶質碳氮氟薄膜(a-C:F:N films)的化學鍵結情形。發現隨著通入CF4氣體流量的上升,此薄膜的鍵結會有往高能遷移的特性。除此之外,我們還利用拉曼光譜來研究薄膜石墨化的程度;利用低掠角的X光繞射得到薄膜的晶體結構;利用掃描式電子顯微鏡得到膜厚和薄膜的表面形貌。觀察到在通入的四氟化碳氣體流量增加下,薄膜的表面形貌將從純粹的薄膜結構轉變成奈米團簇薄膜的形貌。並進一步地利用原子力顯微鏡來研究薄膜的表面粗糙度和更進一步的表面形貌,發現隨著通入的氣體流量上升薄膜的表面粗糙度將隨之提升。最後利用陰極發光技術和奈米檢測系統探討薄膜的發光特性和機械性質。
      


    In this study, we had deposited carbon-related films in a 90̊ -bend magnetic filtered cathodic arc plasma (FCAP) system using CF4 and N2 as gaseous precursors and a graphite cathode target (99.999% pure). X-ray photoelectron spectroscopy (XPS) was used to study the chemical bondings, and the result showed that as CF4 flux increases, all peaks shift to higher binding sides. Besides, the microstructures of the films were investigated using Raman spectroscopy and X-ray diffraction. The thickness and surface morphology of the films were measured by a field emission scanning electron microscope. It showed that the nanoclusters were clearly observed instead of monotonic film growth with the increasing of CF4 content. The surface roughness and morphology of the films were examined by an atomic force microscopy in advance. Finally, the luminescence character was performed by cathodoluminescence spectra and the mechanical properties of the films were detected by a nano-indentation system.

    目錄 Abstract------------------------------------------------------------------------------i 論文摘要---------------------------------------------------------------------------ii 致謝--------------------------------------------------------------------------------iii 第一章、 前言及動機------------------------------------------------------------1 第二章、 文獻回顧 2.1過濾式陰極電弧電漿系統簡介--------------------------------------------3 2.1.1陰極電弧沉積原理----------------------------------------------------4 2.1.2 真空電弧 ( Vacuum Arc )-------------------------------------------6 2.1.3 電弧源 ( Arc Sources )----------------------------------------------6 2.1.4 靶座之外加磁場------------------------------------------------------7 2.1.5 微粒及微粒過濾裝置------------------------------------------------8 2.2 鍍膜成長機制--------------------------------------------------------------12 2.3 電漿與壓力的關係--------------------------------------------------------14 2.4電漿之輝光放電過程------------------------------------------------------16 2.5非晶質碳 ( amorphous carbon )------------------------------------------18 2.5.1 非晶質碳氮膜 ( amorphous carbon nitride films )-------------20 2.5.2非晶質碳氟膜 (fluorinated amorphous carbon films)----------24 第三章、 實驗步驟與流程 3.1 試片準備--------------------------------------------------------------------25 3.2 試片清洗--------------------------------------------------------------------25 3.3合成非晶質碳氮、碳氟及碳氮氟三種薄膜-----------------------------25 3.4 實驗流程--------------------------------------------------------------------31 3.5 實驗參數--------------------------------------------------------------------32 3.6 分析儀器--------------------------------------------------------------------34 3.6.1拉曼光譜分析(Raman Spectroscopy)-----------------------------34 3.6.1.1拉曼光譜儀原理---------------------------------------------34 3.6.1.2拉曼光譜的測定方式---------------------------------------36 3.7.2 傅立葉轉換紅外線光譜儀(FTIR)--------------------------------37 3.7.3 化學分析電子儀分析(ESCA)-------------------------------------39 3.7.4 原子力顯微鏡(Atomic Force Microscopy ,AFM)--------------41 3.7.4.1 探針與材料表面間的交互作用力-----------------------42 3.7.4.2 懸臂彎曲的量測--------------------------------------------43 3.7.4.3 三種操作模式比較-----------------------------------------43 3.7.5 掃描式電子顯微鏡(SEM)-----------------------------------------45 3.7.6 機械性質量測--------------------------------------------------------48 3.7.6.1硬度(Hardness)-----------------------------------------------50 3.7.7 X光繞射(XRD)----------------------------------------------------52 3.7.8 陰極發光量測(CL量測)------------------------------------------54 第四章、結果與討論 4.1 拉曼光譜特性分析 (Raman characterization)------------------------55 4.2 傅立葉轉換紅外線光譜特性分析(FTIR characterization)----------63 4.3 X光光電子能譜特性分析(XPS characterization)---------------------69 4.4掃描式電子顯微鏡特性分析(SEM characterization)-----------------77 4.5原子力顯微鏡特性分析(AFM characterization)-----------------------82 4.6低掠角X光繞射分析法(glancing incident X-ray diffraction characterization )-----------------------------------------------------------87 4.7 陰極發光特性量測 (Cathodoluminescence measurement)----------90 4.8奈米硬度特性分析(Nano-Indentation characterization)--------------95 第五章、結論---------------------------------------------------------------------98 第六章、未來研究方向---------------------------------------------------------99 參考文獻------------------------------------------------------------------------100

    參考文獻

    [1] 賴冠仁,科儀新知,第十六卷五期,P83.
    [2] Boxman RL, Goldsmith S. “Macroparticle contamination in cathodic arc coatings: generation, transport and control” Surf. Coat. Technol. 52(1992)39.
    [3] Ma ZQ, Kido Y. “The atomic displacements on surface generated by low-energy projectile” Thin Solid Films 359(2000)288.
    [4] Siemroth P, Sch□lke T, Witke T. “High-Current arc–a new source for high–rate deposition” Surf. Coat. Technol. 68(1994)314.
    [5] Schuelke T, Writke T, Scheibe HJ, Siemroth P, Schultrich B, Zimmer O. “Comparison of DC and AC arc films deposition techniques” J. Vetter. Surf. Coat. Technol. 120(1999)226.
    [6] Erturk E, Heuvel HJ, Dedrich HG. “CRN and (Ti, Al) N coatings deposited by the steered arc and random arc techniques” Surf. Coat. Technol. 39(1989)455.
    [7] Steffens HD, Mack M, Moehwald K, Reichel K. “Reduction of droplet emission in random arc technology” Surf. Coat. Technol. 46(1991)65.
    [8] Aksenov II, Strel’nitskij VE, Vasilyev VV, Zaleskij DY. “Efficiency of magnetic plasma filters” Surf. Coat. Technol. 163-164(2003)118.
    [9] Aksenov II, Belous VA, Vasil’eV VV, Volkov YY, Strel’nitskij VE. “A rectilinear plasma filtering system for vacuum-arc deposition of diamond-like carbon coatings” Diamond Relat. Mater. 8(1999)468.
    [10] A. Anders, “Approaches to rid cathodic arc plasmas of macro and nanoparticles : a review ” Surf. Coat. Technol. 20-121(1999)319.
    [11] K. Miernik, J. Walkowicz,”Spatial distribution of microdroplets generated in the cathode spots of vacuum arcs ” Surf. Coat. Technol. 125 (2000) 161.
    [12] A. Anders, R. A. Macgill,” Twist filter for the removal of macroparticles from cathodic arc plasmas.” Surf. Coat. Technol. 133-114 (2000)96.
    [13] S. Anders, A. Anders, M.R. Dickenson, R. Macgill, I.G. Brown, ”S-Shaped magnetic macroparticle filter for cathodic arc deposition ” IEEE. Trans. Plasma Sci 25 (1997)670.
    [14] A. Modinos and J. P. Xanthakis ,”Electron emission from amorphous carbon nitride films ” Appl. Phys. Lett. 73 (1988) 1874.
    [15] A. Grill, Diamod Relat. Mater. 8 (1999) 428.
    [16] J. Gabler, L. Schafer, H.Westermann, Diamond Relat. Mater., 19 (2000) 921.
    [17] R. Schnuup, R. Kuhnhold, G. Temmel, E Burte, H. Ryssel, Biosens, Bioelectron. 13 (1998) 889.
    [18] Y. Lifshiz, Diamond Relat. Mater. 8 (1999) 889.
    [19] A. C. Ferrari, Surf. Coat. Technol. 180 (2004) 190
    [20] Ming Zhu, Paul K Chu, Xuejie Shi, Man Wong, Weili Liu, and Chenglu Lin,” Formation of silicon-on-diamond by direct bonding of plasma-synthesized diamond-like carbon to silicon” Appl. Phys. Lett. 85 (2004) 2532.
    [21] J. Robertson, Mater. Sci. and Engineering, 37 (2002) 129.
    [22]W.J. Hsieh, S.H. Lai, L.H. Chan, K.L. Chang, and H.C. Shih, “Cathodoluminescence and Electron Field Emission of Boron-Doped a-C:N Films” Carbon, 43 (2005) 820.
    [23]W.J. Hsieh, C.C. Lin, U.S. Chen, Y.S. Chang, and H.C. Shih, “Cathodoluminescence of the a-C:N Films Deposited by a Filtered Cathodic Arc Plasma System” Diamond Relat. Mater., 14 (2005) 93.
    [24] X.W. Liu, L.H. Chan, W.J. Hsieh, J.H. Lin, and H.C. Shih, “The Effect of Argon on the Electron Field Emission Properties of a-C:N Thin Films” Carbon, 41 (2003) 1143.
    [25] W.J. Hsieh, C.H. Wang, S.H. Lai, J.W. Wong, T.S. Huang, and H.C. Shih, “Cathodoluminescence of Fluorine Doped Amorphous Carbon Nanoparticles Deposited by a Filtered Cathodic Arc Plasma System” Carbon 44 (2006) 107.
    [26] T.I.T. Okpalugo, P.D. Maguire, A.A. Ogwu, J.A.D. McLaughlin, Diamond Relat. Mater. 13(2004)1549.
    [27] P. Zhang, B.K. Tay, G.Q. Yu, S.P. Lau, Y.Q. Fu, Diamond Relat. Mater. 13 (2004) 459.
    [28] Marvin L. Cohen,”Calculation of bulk moduli of diamond and Zinc-blende solids” Phys. Rev. B 32(1985) 7988.
    [29] A.Y. Liu and M.L. Cihen, “Prediction of new low compressibility solids ”Science 245(1989) 841.
    [30] David M. Teter and Russell J. Hemley, “Low-compressibility carbon nitrides ” Science 271(1996) 53.
    [31] O.Matsumoto, T. Kotaki, H. Shikano, K. Takemura and S. Tanaka, “Synthesis of carbon nitride in plasma-arc ”J. Electrochem. Soc 141 (1994) L16.
    [32] K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu and I.C. Wu, “Observation of crystalline C3N4”Phys. Rev. B 49(1994) 5034
    [33] C.Y. Hsu, and F.C.N. Hong ,” Enhanced growth of Beta-C3N4 crystallites at a high substrate temperature ” Jpn. J. Appl. Phys. 37 (1998)L675
    [33] F. Fujimoto and K. Ogata,”Formation of carbon nitride films by means of Ion Assisted Dynamic Mixing (IVD) Method ” Jpn. J. Appl. Phys. 32 (1993)L420
    [34] L. Sung, T.G. Tsai, K.P. Huang, J.H. Huang and H. C. Shih,” The effect of DC bias on the synthesis of crystalline carbon nitrides on silicon by microwave plasma enhanced chemical vapor deposition” Jpn. J. Appl. Phys. 37 (1998)L148.
    [35] C.M. Niu, Y.Z. Lu and C.M. Lieber,”Experimental ealization of the Covalent Solid Carbon Nitride ” Science 261 (1993) 334.
    [36] C.M. Lieber and Z.J. Zhang,” Synthesis of covalent carbon-nitride solids :Alternative to Diamonds ? ” Adv. Mater. 6 (1994) 497
    [37] K.C. Park, J.H. Moon, S.J. Chang, and J.H. Jang,” Field emission property of amorphous carbon nitride ” J. Vac. Sci. Technol. B15 (1997) 431.
    [38] A.Modinos and J. P. Xanthakis ,”Electron emission from amorphous carbon nitride films ” Appl. Phys. Lett. 73 (1988)1874.
    [39] K. Endo, T. Tatsumi, J. Appl. Phys., 78 (1995) 1370.
    [40] T.E. Karis, G.W. Tyndall, D. Fenzel-Alexander, M.S. Crowder, J. Appl. Phys. 81 (1997) 5378.
    [41] C. Donet, J.Fontaine, A.Grill, V.Patel, C.Jahnes, M.Belin, Surf. Cot. Technol. 94&95 (1997) 531.
    [42] R.E. Sah, B. Dischler, A. Bubenzer, P. Koidl, Appl. Phys. Lett. 46 (1985) 739.
    [43] Lai SH, Chang KL, Shih HC, Huang KP, Lin P. “Electron field emission from various morphologies of fluorinated amorphous carbon nanostructures” Appl. Phys. Lett. 85 (2004) 6248.
    [44] 艾啟峰,2001年中華民國鍍膜科技研討會及國科會計畫研究成果發表會,2001,08,30.
    [45] 汪建民, 材料分析, 中國材料科學學會 (1998 ).
    [46] Bharat Bhushan “Handbook of micro/nano tribology”2nd ,2000.
    [47] E.E.Simonyi, K.W.Lee, R.F.Cook, E.G.Liniger, and J.Speidell “Characterization of Spin-On Glass by Microindentation” Mat.Res.Soc.Symp.Proc. 511 (1998) 157.
    [48] W.C.Oliver et.al, “An improved technique for determining hardnessand elastic modulus using load and displacement sensing indentation experiments” J.Mater.Res. 7 (1992) 6.
    [49] Y.T Cheng , C.M. Cheng “Relationships between hardness , elastic modulus ,and the work of indentation” Appl.Phys.Lett..73 Aug ,(1998).
    [50] G.M.Pharr “Measurement of mechanical properties by ultra-low load indentation” Mater.Sci.and Engineering A.253 (1998) 151.
    [51] F. Tuinstra and J. Koening ” Raman Spectrum of Graphite ”, J. L. Chem. Phys. (1970) 1126.
    [52] P. C. Eklund, J. M. Holden, and R. A. Jishj , “ Vibrational modes of carbon nanotubes ; spectroscopy and theory ” Carbon, Vol.33,No 7.pp.959-972.
    [53] S. Prawer, K. W. Nugent, ”Systematic Variation of the Raman spectra of DLC film as a function of SP2:SP3 composition “ , Diamond. Relat. Mater. 5 (1996) 433.
    [54] K.W.R. Gilkes, S. Prawer, K.W. Nugent, J. Robertson, H.S.A. Sands, Y. Lifshitz, X. Shi, J. Appl. Phys. 87 (2000) 7283.
    [55] S.E. Rodil, A.C. Ferrari, J. Robertson, W.I. Milne, J. Appl. Phys. 89 (2001) 5425
    [56] G.Q. Yu, B.K. Tay, Z. Sun, Surf. Cot. Technol. 191 (2005) 236.
    [57] A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095.
    [58] J.H.Kaufman and S.Metin,” Symmetry breaking in nitrogen-doped amorphous carbon : Infrared observation of the Raman-active G and D bands” Phys. Rev. B, vol 39,number 18 ,13053
    [59] K. P. Huang, P. Lin, H. C. Shih, J. Appl. Phys. 96 (2004) 354.
    [60] H. Sj□str□m, S. Stafstr□m, M. Boman, and J,-E. Sundgren , ” Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure” Phys. Rev. lett, vol 75, number 7,1336.
    [61] K. Endo, T. Tatsumi, Appl. Phys. Lett. 68 (1996) 3656.
    [62] M. Hakovirta, K. C. Walter, B. P. Wood, and M. Nastasi,” Graphite macroparticle filtering efficiency of three different magnetic filter designs used in the filtered cathodic vacuum arc deposition of tetrahedral amorphous carbon films ”J. Vac. Sci. Technol. A 17(1999)3077.
    [63] 施百勝, ”以過濾式陰極電弧沉積系統合成碳氮薄膜及其鑑定之研究 ”, 清華大學材料系碩士論文 (2001).
    [64] G..Q. Yu, B.K. Tay, Z. Sun, L.K. Pan, Appl. Surf. Sci. 219 (2003) 228.
    [65] Donaping Liu et al., Surf. Cot. Technol. 172 (2003) 194.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE