簡易檢索 / 詳目顯示

研究生: 陳倬思
Jwo-Sy Chen
論文名稱: The measurement of 3s energy levels of atomic lithium
The measurement of 3s energy levels of atomic lithium
指導教授: 劉怡維
Yi-Wei Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 34
中文關鍵詞: 雙光子光譜3s能階
外文關鍵詞: two-photon spectroscopy, lithium, 3s energy levels
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • To determined the $3$s energy levels of lithium isotopes, a $735$ nm Ti:Sapphire laser is used to
    excite the ground state atomic lithium from a atomic beam system. The laser frequency is measured
    simultaneously by optical frquency comb, which gives the accuracy to $10^{-12}$ level. The
    excitation laser is stabilized by phase-locking to a specific comb line. The induced fluorescences
    spectra of $2$p-$2$s decay channel are fitted to a Voigt function with a Gaussian background to
    decide the transition line centers. The best signal-to-noise ratio of the transition spectrum is
    about $200$. The measured transition centers are $815\,618\,181.26(48)$ MHz and $815\,606
    \,729.8(24)$ MHz for $^7$Li and $^6$Li $2$s-$3$s transitions respectively, which is improved by an
    order of magnitude for \,$^7$Li. However, The hyperfine structure constants, $93.73(48)$ MHz for
    \,$^7$Li and $36.0(35)$ MHz for \,$^6$Li, show the discrepancy with previous measurements
    \cite{Bushaw2003,Ewald2004}.


    To determined the $3$s energy levels of lithium isotopes, a $735$ nm Ti:Sapphire laser is used to
    excite the ground state atomic lithium from a atomic beam system. The laser frequency is measured
    simultaneously by optical frquency comb, which gives the accuracy to $10^{-12}$ level. The
    excitation laser is stabilized by phase-locking to a specific comb line. The induced fluorescences
    spectra of $2$p-$2$s decay channel are fitted to a Voigt function with a Gaussian background to
    decide the transition line centers. The best signal-to-noise ratio of the transition spectrum is
    about $200$. The measured transition centers are $815\,618\,181.26(48)$ MHz and $815\,606
    \,729.8(24)$ MHz for $^7$Li and $^6$Li $2$s-$3$s transitions respectively, which is improved by an
    order of magnitude for \,$^7$Li. However, The hyperfine structure constants, $93.73(48)$ MHz for
    \,$^7$Li and $36.0(35)$ MHz for \,$^6$Li, show the discrepancy with previous measurements
    \cite{Bushaw2003,Ewald2004}.

    1 Introduction 1 2 Theory 3 2.1 Two-photon Spectroscopy...............................3 2.1.1 Doppler-free Spectroscopy...........................4 2.1.2 Lineshape...........................................5 2.1.3 Transition Probability..............................6 2.1.4 AC Stark Shift......................................8 2.2 Atomic Lithium........................................9 2.2.1 Properties of Lithium...............................9 2.2.2 Hyperfine Structure................................10 2.2.3 Isotope Shift......................................11 3 Experimental Setup.....................................15 3.1 Two-photon Spectrometer..............................15 3.2 Frequency Comb Laser System..........................17 3.3 Laser Stabilization and Data Acquisition.............18 4 Results and Discussion.................................20 4.1 Systematic Errors....................................20 4.1.1 First-order Doppler Effect.........................20 4.1.2 Second-order Doppler Effect........................22 4.1.3 AC Stark Shift.....................................22 4.1.4 Effect of Misalignment.............................23 4.2 Fitting Model and Results............................24 4.3 Comparisons with Previous Experiments................30 5 Conclusions...........................................33

    [1] B. A. Bushaw et al., Phys. Rev. Lett. 91, 113002 (2003).
    [2] G. Ewald et al., Phys. Rev. Lett. 93, 113002 (2004).
    [3] G. W. F. Drake, W. Nortershauser, and Z. Yan, Can. J. Phys. 83, 311 (2005).
    [4] Z. Yan and G. W. F. Drake, Phys. Rev. A 66, 042504 (2002).
    [5] Z. Yan and D. G. W. F., Phys. Rev. Lett. 91, 113004 (2003).
    [6] K. Pachucki and J. Komasa, Phys. Rev. A 68, 042507 (2003).
    [7] Z. Yan and G. W. F. Drake, Phys. Rev. A 61, 022504 (2000).
    [8] M. Puchalski, A. M. Moro, and K. Pachucki, Phys. Rev. Lett. 97, 133001 (2006).
    [9] R. Sanchez et al., Phys. Rev. Lett. 96, 033002 (2006).
    [10] G. Grynberg and B. Cagnac, Rep. Prog. Phys. 40, 791 (1977).
    [11] B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, 2nd ed.
    (Prentice Hall, London, 2003).
    [12] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
    [13] W. E. Otten, Nuclear Radii and Moments of Unstable Isotopes, 1st ed. (Plenum
    Press, New York, 1987).
    [14] S. Hannemann, E. J. Salumbides, and W. Ubachs, Opt. Lett. 32, 1381 (2007).
    [15] G. D. Stevens et al., Phys. Rev. A 51, 2866 (1995).
    [16] Z. Yan, D. K. McKenzie, and G. W. F. Drake, Phys. Rev. A 54, 1322 (1996).
    [17] L. J. Radziemski, R. Engleman Jr., and J. Brault, Phys. Rev. A 52, 4462 (1995).
    [18] E. Riis et al., Phys. Rev. A 49, 207 (1994).
    [19] W. Scherf, O. Khait, H. Jager, and L. Windholz, Z. Phys. D: At., Mol. Clusters.
    36, 31 (1996).
    [20] G. A. Noble, B. E. Schultz, H. Ming, and W. A. van Wijngaarden, Phys. Rev. A
    74, 012502 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE