研究生: |
陳建佑 Chen, Chien-Yu |
---|---|
論文名稱: |
無線感測網路分散式估計之節能循序訊息累積方法研究 Energy-Efficient Sequential Information Accumulation Schemes for Distributed Estimation in Wireless Sensor Networks |
指導教授: |
蔡育仁
Tsai, Yuh-Ren |
口試委員: |
洪樂文
Hong, Yao-Win 林澤 Lin, Che |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 估計 、無線感測網路 、量化 |
外文關鍵詞: | estimation, wireless sensor networks, quantization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線感測網路作分散式估計時,使用連續訊號累積方法使得節省能量變得更有可能。如何去減少能量的消耗以及如何去增加估計的效能對於在無線感測網路作分散式估計時,是很重要的議題。我們藉由把感測點分成兩組,一組是比較可靠的,我們把連續訊號累積方法稍作修改使其變成分組式連續訊號累積方法。接著,我們在提出的方法中加入權重向量的概念,因為此項設計,我們可能達到能量的節省或者增加估計的效能。於是我們分別再設計了兩種方法,節能取向分組式連續訊號累積方法與提升效能取向分組式連續訊號累積方法。
Sequential information accumulation (SIA) is a technique that makes energy conservation possible for distributed estimation in wireless sensor networks. How to reduce energy consumption and how to improve estimation performance are the main topics for distributed estimation in wireless sensor networks. By separating sensor nodes into two groups, one is more reliable than the other, we modify SIA scheme into SIA with group separation (SIA-GS) scheme. Then, by introducing the weighting vector to the SIA-GS scheme, we can achieve both targets, energy saving and performance improvement. Thus, we propose two schemes, SIA-GS for performance improvement (SIA-GS-PI) scheme and SIA-GS for energy saving (SIA-GS-ES) scheme, just by adjusting the weighting factors.
[1] Y. Li, M. T. Thai, and W. Wu, Wireless Sensor Networks and Applications, Springer, 2008, pp.331–347.
[2] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks: Technology, Protocols, and Applications, John Wiley & Sons, Hoboken, New Jersey, 2007.
[3] R. Madan, S. Cui, S. Lall, and A. Goldsmith, “Modeling and optimization of transmission schemes in energy-constrained wireless sensor networks,” IEEE/ACM Trans. Networking, vol. 15, no. 6, pp. 1359–1372, 2007.
[4] J. Li and G. AlRegib, “Function-Based Network Lifetime for Estimation in Wireless Sensor Networks,” IEEE Signal Processing Lett., vol. 15, pp. 533–536, 2008.
[5] I. Akyildiz, W. Su, Y. Sankarsubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,” Comput. Netw., vol. 38, pp. 393–422, Mar. 2002.
[6] Wald, Sequential Analysis. New York: Wiley, 1947.
[7] J. Li and G. AlRegib, “Rate-constrained distributed estimation in wireless sensor networks,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1634–1643, May 2007.
[8] Z.-Q. Luo and J.-J. Xiao, “Decentralized estimation in an inhomogeneous sensing environment,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3564–3575, Oct. 2005.
[9] F. Gray, “Pulse code communication,” U.S. patent no. 2,632,058, March 17, 1953.
[10] S. M. Kay, Fundamentals of Statistical Signal Process.: Estimation Theory. Upper Saddle River, NJ: Prentice-Hall, 1993.