簡易檢索 / 詳目顯示

研究生: 巫承芳
Wu, Chen-Fang
論文名稱: 策略型品質選擇與研發投入分析:以全球智慧型手機市場為例
Strategic Quality Choice and R&D Investments: Analysis of Global Smartphone Market
指導教授: 李宜
Lee, Yi
口試委員: 林靜儀
Lin, Ching-Yi
李浩仲
Li, Hao-Chung
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 經濟學系
Department of Economics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 39
中文關鍵詞: 品質選擇研發投入市場進入不完全訊息品質分割K-PrototypesNPL離散選擇模型
外文關鍵詞: Quality Choice, R&D, Market Entry, Incomplete Information, Quality Segmentation, K-Prototypes, NPL, Discrete Games
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以全球智慧型手機市場為例探討了企業所採用品質策略的競爭效應並分析其對各種品質策略偏好的關鍵因素。突破以往依賴主觀判斷的傳統方法,我們使用 K-prototypes 演算法以可量化的規格資料透過分群分析客觀地衡量品質,以確定企業的品質定位。我們構建了一個不完全訊息離散選擇模型,並應用 Nested Pseudo-Likelihood(NPL)演算法,通過迭代更新選擇機率直至參數收斂來估計企業的品質策略。研究結果顯示,企業更傾向於採用與競爭對手區別的品質策略。此外,我們還發現研發強度在影響企業進入不同品質市場中扮演著關鍵角色,並計算出企業進入各種品質市場所需的研發投入臨界值,為學術研究和產業中的實際應用提供了重要的見解。


    This thesis examines the competitive effects of firms' quality strategies and the key factors influencing their preferences for various quality strategies within the global smartphone industry. Moving beyond traditional methods reliant on subjective judgments, we employ data-driven clustering, specifically using the K-prototypes algorithm, to objectively measure quality using quantifiable specification data and ascertain firms' quality positioning. We construct an incomplete information discrete choice model and apply the Nested Pseudo-Likelihood (NPL) algorithm, which iteratively updates choice probabilities until parameter convergence, to estimate firms' quality strategies. The results indicate that firms tend to adopt quality strategies that differentiate them from their rivals. Furthermore, we find that R&D intensity plays a critical role in determining firms' entry into different quality markets, and we calculate the critical R&D investment thresholds necessary for firms to enter various quality market segments. These findings provide valuable insights for both academic research and practical applications in the industry.

    Abstract (Chinese) i Acknowledgements (Chinese) ii Abstract iii Acknowledgements iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 Literature Review 5 3 Model 9 4 Data 13 4.1 Smartphone Clustering 13 4.2 Dataset 17 5 Estimation 21 5.1 Quality Strategy Definition 21 5.2 Identification 23 6 Empirical Results 27 6.1 Quality Strategy Competition 28 6.2 R&D Effect 30 6.3 Robust Check 33 7 Conclusions and Recommendations 35 7.1 Conclusions 35 7.2 Research Limitations and Recommendations 36 Bibliography 37

    Adomako, S., J. Amankwah-Amoah, A. Danso, J. K. Danquah, Z. Hussain, and Z. Khan (2021). R&d intensity, knowledge creation process and new product performance: The mediating role of international r&d teams. Journal of Business Research 128, 719–727.
    Aguirregabiria, V. and P. Mira (2007). Sequential estimation of dynamic discrete games. Econometrica 75(1), 1–53.
    Ashok, V. and D. Vinod (2014). Using k-means cluster and fuzzy c means for defect segmentation in fruits. Int J Comput Eng Technol, 11–19.
    Bajari, P., H. Hong, and D. Nekipelov (2013). Game theory and econometrics: A survey of some recent research. In Advances in economics and econometrics, 10th world congress, Volume 3, pp. 3–52.
    Calvosa, P. et al. (2020). Entry, exit and innovation over the industry life cycle in converging sectors: An analysis of the smartphone industry. International Journal of Business and Management 15(12), 151–168.
    Carvache-Franco, O., G. Guti ́errez-Candela, P. Guim-Bustos, M. Carvache-Franco, and W. Carvache-Franco (2020). Effect of r&d intensity on the innovative performance of manufacturing companies. evidence from ecuador, peru and chile. International journal of innovation science 12(5), 509–523.
    Dubey, S. R., P. Dixit, N. Singh, and J. P. Gupta (2013). Infected fruit part detection using k-means clustering segmentation technique.
    Dunn, A. (2008). Do low-quality products affect high-quality entry? multiproduct firms and nonstop entry in airline markets. International Journal of Industrial Organization 26(5), 1074–1089.
    Einav, L. (2010). Not all rivals look alike: Estimating an equilibrium model of the release date timing game. Economic Inquiry 48(2), 369–390.
    Ellickson, P. B. (2006). Quality competition in retailing: A structural analysis. International Journal of Industrial Organization 24(3), 521–540.
    Ellickson, P. B. and S. Misra (2008). Supermarket pricing strategies. Marketing science 27(5), 811–828.
    Fan, Y. and C. Yang (2020). Competition, product proliferation, and welfare: A study of the us smartphone market. American Economic Journal: Microeconomics 12(2), 99–134.
    Gil, R. and M. Kim (2021). Does competition increase quality? evidence from the us airline industry. International Journal of Industrial Organization 77, 102742.
    Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data mining and knowledge discovery 2(3), 283–304.
    Jung, Y. G., M. S. Kang, and J. Heo (2014). Clustering performance comparison using k- means and expectation maximization algorithms. Biotechnology & Biotechnological Equip- ment 28(sup1), S44–S48.
    Mazzeo, M. J. (2002). Product choice and oligopoly market structure. RAND Journal of Economics, 221–242.
    Polus, A., Y. Shiftan, and S. Shmueli-Lazar (2005). Evaluation of the waiting-time effect on critical gaps at roundabouts by a logit model. European Journal of Transport and Infrastructure Research 5(1).
    Seim, K. (2006). An empirical model of firm entry with endogenous product-type choices. The RAND Journal of Economics 37(3), 619–640.
    Sharma, P., N. S. Davcik, and K. G. Pillai (2016). Product innovation as a mediator in the impact of r&d expenditure and brand equity on marketing performance. Journal of Business Research 69(12), 5662–5669.
    Syahputra, A. A. Z., A. D. Atika, M. A. Aslamsyah, M. C. Untoro, and W. Yulita (2021). Smartphone price grouping by specifications using k-means clustering method. Jurnal Teknik Informatika CIT Medicom 13(2), 64–74.

    QR CODE