研究生: |
黃政文 HUANG, CHENG-WEN |
---|---|
論文名稱: |
凱比機器人融入清華STEAM DDMT課程中「模型與建模階段」對國小高年級學生運算思維之影響 The Impact of Integrating Kebbi Robots into the "Model & Modelling Phase" of Tsing-Hua STEAM DDMT Curriculum on Upper Elementary School Students' Computational Thinking |
指導教授: |
邱富源
CHIU, FU-YUAN |
口試委員: |
王子華
WANG, TZU-HUA 陳明秀 CHEN, MING-HSIU |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 竹師教育學院跨領域 STEAM 教育碩士在職專班 Master Program in Interdisciplinary STEAM Education |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | STEAM教育 、DDMT教學模式 、運算思維 、凱比機器人 、學習態度 |
外文關鍵詞: | STEAM Education, DDMT Teaching Model, Computational Thinking, Kebbi Robot, Learning Attitudes |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資訊科技蓬勃發展,物聯網、AI和大數據等技術日益融入生活,雖然資訊科技的進步帶給人們更便利的生活,但是同時卻也帶給人們更多困難的挑戰。根據經濟合作暨發展組織(OECD)調查指出在2018年入學的學生未來將面對現今無法被預測的挑戰。面對這些挑戰學習者們必須具備問題解決的能力,在這樣的背景下運算思維被視為促使問題解決的關鍵元素。運算思維不僅是面對複雜情境時的有效工具,更是培養學生邏輯思考、創新解決問題的重要基石。然而,運算思維能力並無法靠一門專門的學科就可以培養,而是需要在真實的情境中運用跨領域知識解決複雜問題的過程中有效的培養。而STEAM教育作為一種打破學科分際的教學法,被視為促進學生運算思維和解決問題能力的有效途徑。為釐清STEAM教育是否能有效提升學習者運算思維之能力,本研究將結合凱比機器人融入清華STEAM DDMT課程中「模型與建模階段」探討其對國小高年級學生運算思維之影響。
本研究將透過單組前後測之實驗設計,探討學習者在經歷凱比機器人融入清華STEAM DDMT課程中「模型與建模階段」後運算思維能力及運算思維學習態度之影響。本實驗實驗對象為新竹縣O國小五年級12位學生,學習者在進行STEAM課程前後皆施以運算思維能力試題測驗,並在課程結束後進行運算思維學習態度量表。分析結果回應了本研究兩個研究問題:第一,學習者在經歷凱比機器人融入清華STEAM DDMT課程後,運算思維能力明顯提升,尤其在問題拆解、抽象化及演算法應用上進步顯著;第二,學習者在經歷凱比機器人融入清華STEAM課程後對運算思維的學習態度亦顯著提高,對運算思維從初步的理解逐步深化為認為其為日常問題解決的核心工具,並對未來學習運算思維抱有高度期待。綜上所述,凱比機器人融入清華STEAM DDMT課程中「模型與建模階段」確能有效提升國小高年級學生運算思維能力及學習態度。
With the rapid development of information technology, IoT, AI, and big data technologies are increasingly integrated into daily life. Although these advancements bring more convenience, they also introduce new and complex challenges. According to the Organisation for Economic Co-operation and Development (OECD), students who began school in 2018 will face unpredictable challenges in the future. To address these challenges, learners must develop problem-solving skills, and in this context, computational thinking is regarded as a key element in facilitating problem-solving. Computational thinking serves not only as an effective tool for dealing with complex situations but also as a crucial foundation for cultivating students’ logical thinking and innovative problem-solving abilities. However, computational thinking skills cannot be fully nurtured within a single discipline; instead, they require authentic, real-world applications in which students draw on interdisciplinary knowledge to solve complex problems. STEAM education, as a teaching approach that transcends subject boundaries, is considered an effective means to promote students’ computational thinking and problem-solving skills. To explore whether STEAM education effectively enhances computational thinking skills, this study incorporates the Kebbi robot into the "Model & Modelling" phase of the Tsing-Hua STEAM DDMT curriculum to examine its impact on computational thinking in upper elementary students.
This study employs a one-group pretest-posttest experimental design to explore the effects of the "Model & Modelling" phase, with Kebbi robots integrated into the Tsing-Hua STEAM DDMT curriculum, on computational thinking skills and attitudes. The participants are 12 fifth-grade students from an elementary school in Hsinchu County. The students completed a computational thinking skills test both before and after the STEAM curriculum and took a computational thinking attitude scale at the end of the course. The analysis results address two research questions: First, after the integration of Kebbi robots into the Tsing-Hua STEAM DDMT curriculum, students showed a significant improvement in computational thinking skills, particularly in problem decomposition, abstraction, and algorithmic application. Second, the students’ attitudes toward learning computational thinking also significantly improved, evolving from an initial understanding to viewing computational thinking as a core tool for solving everyday problems, with a strong interest in further developing these skills in the future. In conclusion, integrating Kebbi robots into the "Model & Modelling" phase of the Tsing-Hua STEAM DDMT curriculum effectively enhances computational thinking skills and attitudes among upper elementary students.
●中文部分
王子華、林紀慧(2018)。「清華STEAM 學校」推動新數理人才在地培育機制。科學教育實作學門電子期刊,12。 https://doi.org/
王子華(2019)。「清華STEAM 學校」之DDMT教學模式的建構。科學教育實作學門電子期刊,17。
吳明隆(2010)。AMOS 結構方程式模式的操作與應用(第二版)。臺北市:五南。
范斯淳、游光昭(2016)。科技教育融入 STEM 課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。 https://doi.org/10.6209/JORIES.2016.61(2).06
陳怡靜、張基成(2015)。兩岸機器人教育的現況與發展。中等教育,第66卷,第3
期,頁37-59。 https://doi.org/10.6249/SE.2015.66.3.03
教育部 (2019)。十二年國民基本教育課程總體綱要
劉姵君(2015)。美國、歐盟、英國STEM教育策略對我國之啟發
●英文部分
ACARA. (2013). Australian Curriculum, Assessment and Reporting Authority. https://www.acara.edu.au/
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM Inroads, 2(1), 48.
Bybee R. W. (2013). The Case for STEM Education: Challenges and Opportunities. NSTA PressBook.
BBC Bitesize. (2016, May 23). Introduction to computational thinking. Bebras. (2017). International challenge on informatics and compututational thinking, http://www.bebras.org/
Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka,F. (2018). Social robots for education: A review. Science Robotics, 3(21) 59-68.
CSTA 2011 CSTA K–12 computer science standards. The ACM K-12 Education ask Force.
Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field. Educational Researcher, 42(1), 38–43. Google (2015). Exploring Computational Thinking. Retrieved from https://www.google.com/edu/resources/programs/exploring-computational-thinking/
Hwang*, G. J., & Chang, H. F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023-1031.
ISTE (International Society for Technology in Education) & CSTA (Computer Science Teachers Association). (2011). Operational definition of computational thinking for K-12 education. Chicago, IL: Author.
Kim, S. H., & Jeon, J. W. (2006). Educating C language using LEGO Mindstorms robotic invention system 2.0.Paper presented at the Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.
Li, D., & Chen, X. (2020). Study on the Application and Challenges of Educational Robots in Future Education. Paper presented at the 2020 International Conference on Artificial Intelligence and Education (ICAIE).
OECD 2018 The Future of Education and Skills .
Selby, C. (2013). Computational Thinking : The Developing Definition. ITiCSE Conference 2013, 5-8.
Sinha, N., Singh, P., Gupta, M., & Singh, P. (2020). Robotics at workplace: An integrated Twitter analytics–SEM based approach for behavioral intention to accept. International Journal of Information Management, 55, 102210.
TanenbaumCourtney. (2016). STEM 2026: A Vision for Innovation in STEM Education. Office of Innovation and Improvement. Washington, District of Columbia: U.S. Department of Education.
Wing, J. M. 2006)). Computational thinking. Communications of the ACM, 49(3), 33-35. Wang, T. H., Lim, K. Y. T., Lavonen, J., & Clark-Wilson, A. (2019). Maker-centred science and mathematics education: Lenses, scales and contexts. International Journal of Science and Mathematics Education, 17(suppl 1), 1-11.