簡易檢索 / 詳目顯示

研究生: 趙柏鈞
Chao, Po-Chun
論文名稱: 氧化鋁閘極絕緣層之4H-碳化矽金氧半場效應電晶體及4H-碳化矽蕭基二極體設計與製作
Fabrication and Characterization of 4H-SiC MOSFET with Al2O3 gate insulator and 4H-SiC Trench-Field-Plate Schottky Barrier Diode
指導教授: 黃智方
Huang, Chih-Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 氧化鋁金氧半場效電晶體蕭基二極體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以4H-碳化矽的n型基板及p型磊晶層製作出橫向金氧半場效應電晶體,為了避免熱氧化的二氧化矽與碳化矽表面有碳沉積,使界面捕捉電荷密度提高,遷移率被限制住,利用原子氣相沉積氧化鋁材料做為閘極絕緣層,透過電流-電壓分析其特性,可得到最大約130 cm2/Vs的遷移率,也製作出利用p型矽基板沉積氧化鋁的金氧半電容結構,並且對氧化鋁做不同溫度的氧氣熱退火製程,透過電流-電壓及電容-電壓量測觀察出最400~500℃為最佳熱退火溫度。
      由於寬能隙半導體適合做為高功率元件,本篇論文也以4H-碳化矽n型基板及n型磊晶層製作出垂直型蕭基二極體,藉由模擬決定以溝渠填入氮化矽的方式製作出蕭基二極體並著手進行相同結構的製程,透過實際元件的電流-電壓及電容-電壓量測,可得到理想因子約1.08~1.2,導通電阻約為2.5 mΩ*cm2,最佳崩潰電壓約940 V,並將量測結果與模擬進行比較分析。


    4H-SiC lateral NMOSFETs on p--type epitaxial layer were fabricated and studied. In order to avoid high interface states (Dit) caused by carbon cluster near the SiO2/4H-SiC interface and to enhance Field- Effect Mobility (μFE), we choose Atomic-Layer-Deposition (ALD) Al2O3 to be the critical gate insulator. The measured maximum μFE is about 130 cm2/Vs by analyzing I-V characteristics. We also fabricated MIS capacitor with Al2O3 as the insulator on p-type silicon substrate, and investigated the improvement of Al2O3 quality by annealing in oxygen with different temperature. C-V and I-V measurements indicated the best annealing temperature is between 400~500℃.
    Wide band gap materials with high breakdown electric field are needed for high-power semiconductor devices. 4H-SiC vertical Schottky Barrier Diode (SBD) on n--type epitaxial layer were also studied and fabricated in this thesis. The structure of the device is Trench-Field Plate SBD (TFPSBD) that we designed with simulation tools. The measured ideal factor is 1.08~1.2, The Ron,sp of 50 μm diameter diode is 2.5 mΩ*cm2, and the best breakdown voltage is 940 V.

    目錄 摘要 I   中文摘要 I   英文摘要 II 誌謝 III 目錄 VIII 圖目錄 XIII 表目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 碳化矽材料簡介 1 1.3 文獻回顧與研究動機 2 1.4 論文大綱 6 第二章 工作原理及元件結構 12 2.1 MOS結構 12 2.1.1 氧化層電荷分佈 12 2.1.2 電容-電壓(C-V)量測原理 14 2.1.3 氧化層電荷量量測與計算 15 2.2 MOSFET特性 16 2.2.1 臨界電壓 16 2.2.1 轉導增益(transconductance)與場效遷移率 18 2.3 絕緣層特性對MOSFET元件特性之影響 18 2.3.1 移動電荷對MOSFET元件特性之影響 18 2.3.2 界面捕捉電荷對MOSFET電性的影響 18 2.4 功率元件的崩潰機制 19 2.4.1 簡介 19 2.4.2 累增崩潰(Avalanche Breakdown) 19 2.5 蕭基二極體基本結構 21 2.6 蕭基二極體工作原理 22 2.6.1 偏壓特性(Bias Characteristics) 22 2.6.2 順向電壓降(Forward Voltage drop) 22 2.6.3 反向漏電流(Reverse Leakage Current) 23 2.6.4 崩潰電壓(Blocking Voltage) 24 2.7 邊緣終結保護結構(Edge termination) 25 2.7.1 簡介與基本原理 25 2.7.2 場平板結構原理 25 第三章 MOSFET光罩設計、製程及量測分析 33 3.1 MOSFET元件光罩設計 33 3.2 MOSFET元件製程步驟 33 3.3 量測結果分析 37 3.3.1 測試元件量測結果分析 37 3.3.2 元件量測結果分析 38 3.3.3 溫度效應 40 3.3.4 氧化鋁退火溫度探討 41 第四章 Trench-Field plate SBD(TFPSBD)元件模擬、光罩 設計、製程及量測分析 76 4.1 TFPSBD元件模擬 76 4.1.1 元件結構 76 4.1.2 模擬一維崩潰理論值 77 4.1.3 模擬結果分析 77 4.1.3-1 順向特性 77 4.1.3-2 反向特性 77 4.1.4 TFPSBD 製程參數確定 79 4.2 TFPSBD光罩設計 79 4.3 TFPSBD元件製程步驟 80 4.4 研磨製程 84 4.4.1 砂紙研磨 84 4.4.2 氧化鋁粉研磨 85 4.4.3 研磨液研磨 85 4.5 量測結果分析 86 4.5.1 順向特性 86 4.5.2 反向特性 86 4.5.3 崩潰電壓 87 4.5.4 溫度效應 88 第五章 結論與未來工作建議 120 參考文獻 122 附錄 125 附錄一 125 附錄二 125 附錄三 125 附錄四 126 附錄五 126 附錄六 128

    [1] C. E. Weitzel and K. E. Moore , “Silicon Carbide and Gallium Nitride RF Power Device,” Power Semiconductor Material and Device, p111-120, 1997.
    [2] T. P. Chow, N. Ramungul, and M. Ghezzo, “Wide Bandgap Semiconductor Power Device,” Power Semiconductor Material and Device, p89-102, 1997.
    [3] A. R. Powell and L. B. Rowland, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol. 60, pp. 942-955, 2002.
    [4] H. S. Lee, “High Power Bipolar Junction Transistors in Silicon Carbide,” Royal Institute of Technology, Stockholm, Sweden, 2005.
    [5] T. Zheleva, I. Levin, D. Habersat, A. Lelis, M. Dautrich, and P. Lenahan, “Structural and Analytical Studies of 4H Silicon Carbide MOSFETs with Thermally Grown Oxides,” Semiconductor Device Research Symposium, 2005 International, pp. 139-140, 2005.
    [6] T.Endo,E.Okuno,T.Sakakibara,and S.onda,”High Channel Mobility of MOSFET Fabricated on 4H-SiC(11-20) Face Using Wet Annealing,”Material Science Forum Vols.615-617(2009),pp 813-816
    [7] Y.wang,K.Tang,T.khan,M.K.Balasubramanian,H.Naik,W.Wang,and T.P.Chow,”The Effect of Gate Oxide Processes on the Performance of 4H-SiC MOSFETs and Gate-controlled Diodes,” IEEE Transactions On Electron Device,Vol.55,No.8,August 2008
    [8] M.Noborio,J.Suda,and T.kimoto,”4H-SiC MIS Capacitors and MISFETs with Deposited SiNx/SiO2 Stack-Gate Structures,” IEEE Transactions On Electron Devices,Vol.55,No.8,August 2008
    [9] S. W. Huang, and J. G. Hwu, “Ultrathin Aluminum Oxide Gate Dielectric on N-Type 4H-SiC Prepared by Low Thermal Budget Nitric Acid Oxidation,” IEEE Trans. Electron Devices, Vol. 51, No. 11, pp. 1877-1882, 2004.
    [10] S.Hino,T.Hatayama,N.Miura,T.Oomori,and E.Tokumitsu , ” Fabrication and Characterization of 4H-SiC MOSFET with MOCVD-grown Al2O3 Gate Insulator,”Materials Science Forum Vols.556-557(2007) ,PP 787-790
    [11] S.Hino,T.Hatayama,N.Miura,T.Oomori,and E.Tokumitsu , ” Anomalously High Channel Mobility in SiC-MOSFETs with Al2O3/SiOx/SiC Gate structure,”Materials Science Forum Vols.600-6037(2009) ,PP 683-686
    [12] C.C.Cheng,C.H.Chien,G.L.Luo,J.C.Liu,C.C.Kei,D.R.Liu,C.N.Hsiao,C.H.Yang,and C.Y.Chang,”Charcteristics of Atomic Layer Deposited Al2O3 High-k Dielectric Films Grown on Ge substrates,” Jurnal of the Electrochemical Society,155(10) G203-G208 (2008)
    [13] B. J. Baliga, Modern Power Devices, New York, Wiley, 1987.
    [14] B. J. Baliga, Power Semiconductor Devices, Boston, PWS, 1996.
    [15] M. Bhatnagar, P. K. McLarty, and B. J. Baliga, “Silicon-Carbide High-Voltage (400V) Schottky Barrier Diodes,” IEEE Electron Device Lett., Vol. 13, No. 10, pp.501-503, October, 1992.
    [16] A. Itoh, T. Kimoto, and H. Matsunami, “Excellent Reverse Blocking Characteristics of High-Voltage Schottky Rectifiers with Boron-Implanted Edge Termination,”IEEE Electron Device Lett., Vol. 17, No. 3, pp.139-141, March, 1996.
    [17] T.Yamamoto, T.Endo, N.Kato, H.Nakamura and T.Sakakibara, “600 V 100 A 4H-SiC Junction Barrier Schottky Diode with Guard Rings Termination,” Materials Science Forum., Vol.556-557(2007), pp 857-860.
    [18] C.Ota, J.Nishio, T.Hatakeyama, TShinohe, K.Kojima, S.Nishizawa, and H.Ohashi “Fabrication of 4H-SiC Floating Junction Schottky Barrier Diode (Super-SBDs) and Their Electrical Properties,” Material Science Forum,Vol.527-529(2006). pp 1175-11178.
    [19] S. C. Chang, S. J. Wang, K. M. Uang, and B. W. Liou, “Design and fabrication of high breakdown voltage 4H-SiC Schottky barrier diodes with floating metal ring edge terminations,” Solid-State Electronics, Vol. 49, No. 3, pp. 437-444, March, 2005.
    [20] D. C. Sheridan, G. Niu, J. N. Merrett, J. D. Cressler, J. B. Dufrene, J. B. Casady, and I. Sankin, “Comparison and Optimization of Edge Termination Techniques for SiC Power Device,” IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 191-194, 2001
    [21] J.H.Zhao,P.Alexandrov,X.Li“Demonstration of the First 10-kV 4H-SiC Schottky Barrier Diodes” IEEE ELECTRON DEVICE LETTERS,VOL.24,NO.6.JUNE 2003
    [22] D. K. Schroder, “Semiconductor Material and Device Characterization, Third Edition,” John Wiley & Sons, Inc., Publication.
    [23] D. A. Neamen, Semiconductor Physics & Devices, 3nd Edition, McGraw-Hill Inc., 2003.
    [24] V. Khemka, R. Patel, T. P. Chow, and R. J. Gutmann, “Design Consideration and Experimental Analysis for Silicon Carbide Power Rectifiers,” Solid-State Electronics, Vol. 43, No. 10, pp. 1945-1962, October, 1999.
    [25] R. S. Singh, J. A. Cooper, M. R. Melloch, T. P. Chow, and J. W. Palmour, “SiC Power Schottky and PiN Diodes,” IEEE Trans. Electron Devices, Vol. 49, pp. 665-671, April, 2002
    [26] V.Khemka,R.Patel,N.Ramungul,T.P.Chow,M.Ghezzo,and J.Kretchmer,”Characterization of Phosphorus Implantation in 4H-SiC,”Journal of Electronic Materials, vol.28,No.3,1999
    [27] J.Steszewski,A.Jakubowski,and M.L.Korwin- Pawlowski ,” Comparison of 4H-SiC and 6H-SiC MOSFET I-V characteristics simulated with Silvaco Atlas and Crosslight Apsys,”JOURNAL OF TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY,march,2007
    [28] R. S. Muller, and T. I. Kamins, Device Electronics for Integrated Circuits, 3rd Edition, Wiley, 2002
    [29] T.Zheleva,A.Lelis,G.Duscher,F.Liu,L.Levin,and M.Das,”Transition layers at the SiO2/SiC interface,”APPLIED PHYSICS LETTERS,93,022108,2008
    [30] X.H.Zhang,B.Domercq,X.Wang,S.Yoo,T.Kondo,Z.L.Wang,and B.Kippelen,”High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition,”Organic Electronics 8,2007,718-726
    [31] K.V.Vassilevski, I.P.Nikitina, N.G.Wright, A.B.Horsfall, A.G.O’Neill, C.M.Johnson,”Device processing and characterisation of high temperature sic sbd”Microelectronic Engineering,83,150-154,2006
    [32] V.Saxena, J.N.Su, and A.J.Steckl,”High-Voltage Ni– and Pt–SiC Schottky Diodes Utilizing Metal Field “IEEE Transaction on Electron Devices,Vol.46,No.3,MARCH,1999
    [33] Anant Agarwal,R.Singh,S.H Ryu , J.Richmond, C.Capell, S.Schwab, B.Moore and J.Palmour,”600 V, 1- 40 A, Schottky Diodes in SiC and Their Applications”

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE