簡易檢索 / 詳目顯示

研究生: 羅英慈
論文名稱: 利用懲罰樣條迴歸模型的同時信賴區帶來監控曲線品質特徵
指導教授: 黃榮臣
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 懲罰樣條迴歸模型線性混合效應模型第二階段的輪廓監控
外文關鍵詞: penalized spline regression model, linear mixed model, profile monitoring
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多生產製造的過程,品質特性是由反應變數和一個或多個解釋變數間的關係來界定,而若品質特性是以一個函數或是一個曲線的型態來呈現,則稱之為輪廓。本研究主要是著重在第二階段的製程輪廓監控,我們先使用懲罰樣條迴歸模型來描述反應變數和解釋變數之間的複雜關係,並利用線性混合模型的配適來估計懲罰樣條迴歸模型中的參數。接著我們再利用建立同時信賴區帶的概念提出一個新的Shewhart管制圖,並利用這個管制圖來監控輪廓製程。我們經由統計模擬來評估所提出的管制圖的偵測效率,同時也透過一個例子來說明這種管制圖在實際上如何使用。


    第一章 緒論 1 1.1 前言 1 1.2 Shewhart、EWMA與CUSUM管制圖 2 1.3 輪廓的監控 3 1.4 研究動機與目的 5 第二章 懲罰樣條迴歸模型 7 2.1 模型的假設 7 2.2 參數估計 9 2.3 管制圖的建構 13 第三章 管制圖的表現 17 3.1 管制圖的比較準則 17 3.2 管制界限的求法 18 3.3 管制圖偵測效力的比較 22 3.3.1 ZTW管制圖 22 3.3.2 階梯式位移 27 3.4 實例分析 29 第四章 結論與未來研究方向 32 參考文獻 34 附表 37 附圖 54

    Chen, G., Cheng, S. W. and Xie, H. (2001). “Monitoring Process Mean and Variabili-
    ty With One EWMA Chart,” Journal of Quality Technology, 33, 223-233.
    Croarkin, C. and Varner, R. (1982). “Measurement Assurance for Dimensional Mea-
    Surements on Integrated-Crircuit Photomasks,” NBS Technical Note 1164, U.S.
    Department of Commerce.
    Crowder, S. V. (1987a). “A simple Method for Studying Run-Length Distributions of
    Exponentially Weighted Moving Average Charts,” Technometrics, 29, 401-407.
    Crowder, S. V.(1989).“Design of Exponentially Weighted Moving Average Schemes,”
    Journal of Quality Technonlgy, 21, 155-162.
    Ding, Y., Zeng, L. and Zhou, S. (2006). “Phase I Analysis for Monitoring Nonlinear Profiles in Manufacturing Process,” Journal of Quality Technonlgy, 38, 199-216.
    Fan, J., and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications, London:Chapman & Hall.
    Fan, J. and Huang, L-S. (2001). “Goodness-of-Fit Tests for Parametric Regression Models,” Journal of the American Statistical Association, 96, 640-652.
    Fan, J., Zhang, C. and Zhang, J. (2001). “Generalized Likelihood Ratio Statistics and Wilks Phenomenon,” The Annals of Statistics, 29, 153-193.
    Gupta, S., Montgomery, D. C. and Woodall, W. H. (2006). “Performance Evaluation of Two Methods for Online Monitoring of Linear Calibration Profiles,” Internatio-
    nal Journal of Production Research, 44, 1927-1942.
    Hall, P. and Marron, J. S. (1990). “On Variance Estimation in Nonparametric Regres-
    sion,” Biometrika, 77, 415-419.

    Hayes, K. and Haslett, J. (1999). Simplifying general least squares. American Statisti-
    cian, 53, 376-81.
    Jin, J. and Shi, J. (1999). “Feature-Preserving Data Compression of Stamping Tonn-
    age Information Using Wavelet,” Technometrics, 41, 327-339.
    Kang, L., and Albin, S. L. (2000). “On-Line Monitoring When the Process Yields a Li- near Profile,” Journal of Quality Technonlgy, 32, 418-426.
    Kim, K., Mahmoud, M. A. and Woodall, W. H. (2003). ”On the Monitoring of Line-
    ar Profiles,” Journal of Quality Technonlgy, 35, 317-328.
    Lada, E. K., Lu, J.-C. and Wilson, J. R. (2002). “A Wavelet-Based Procedure for Pr-
    ocess Fault Detection,” IEEE Transactions on Semiconductor Manufacturing, 15,
    79-90.
    Lucas, J. M. and Saccucci, M. S. (1990). “Exponentially Weighted Moving Average Control Scheme Properties and Enhancements,” Technometrics, 32, 1-29.
    Mahmoud, M. A., Parker, P. A., Woodall, W. H., and Hawkins. D. M. (2007). “A Ch-
    ange Point Method for Linear Profile Data,” Quality and Reliability Engineering
    International, 23, 247-268.
    McCulloch, C. E. and Searle, S. R. (2001). Generalized Linear and Mixed Models. New York:Wiley.
    Mestek, O., Pavlik, J. and Suchanek, M. (1994). “Multivariate Control Charts:Cont-
    rol Charts for Calibration Curves,” Journal of Analytical Chemistry, 350, 344-351.
    Page, E. S. (1954). “Continuous Inspection Schemes,” Biometrics, 41, 100-115.
    Quesenberry, C. P. (1995). “On Properties of Q Charts for Variables,” Journal of Qual-
    ity Technology, 27, 184-203.
    Roberts, S. W. (1959). “Control Chart Tests Based on Geometric Moving Averages,”
    Technometrics, 42, 97-102.
    Robinson, G. K. (1991). The BLUP is a good thing:The Estimation of Random Effec-
    ts. Statistical Science 6, 15-51.
    Ruppert, D., Wand, M. P. and R. J. Carroll, (2003). Semiparametric Regression, Cam-
    bridge University Press.
    Walker, E. and Wright, S. P. (2002). “Comparing Curves Using Additive Models,”
    Journal of Quality Technonlgy, 34, 118-129.
    Williams, J. D., Woodall, W. H. and Birch, J. B. (2007). “Statistical Monitoring of No-
    nlinear Product and Process Quality Profiles,” Quality and Reliability Engineering
    International, 23, 925-941.
    Williams, J. D., Birch, J. B., Woodall, W. H., and Ferry, N. M. (2007). “Statistical Mo-
    nitoring of Heteroscedastic Dose-Response Profiles From High-Throught Screeni-
    ng,”Journal of Agricultural, Biological, and Environmental Statistics, 12, 216-235.
    Woodall, W. H., Spitzner, D. J., Montgomery, D.C., and Gupta, S. (2004). “Using Co-
    ntrol Charts to Monitor Process and Product Quality Profiles,” Journal of Quality Technonlgy, 36, 309-320.
    Zou, C., Zhang, Y., and Wang, Z. (2006). “Control Chart Based on Change-Point Mo- del for Monitoring Linear Profiles,” IIE Transactions, 38, 1093-1103.
    Zou, C., Tsung, F., and Wang, Z. (2008). “Monitoring Profiles Based on Nonparamet- ric Regression Methods,” Technometrics, 50, 512-526.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE