簡易檢索 / 詳目顯示

研究生: 顏湘婕
Yen, Shiang-Jie
論文名稱: 官能基化奈米碳管於神經電極與白金鍍膜於微生物燃料電池電極之應用
Functionalized Carbon Nanotubes as a Neural Electrode and Platinum Film as an Electrode for Microbial Fuel Cell
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員: 陳新
葉世榮
蔡銘麒
彭慧玲
李連忠
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 134
中文關鍵詞: 奈米碳管神經電極白金鍍膜微生物燃料電池
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,主要分為兩個部分,第一個部分是奈米碳管作為神經電極介面,第二部分為白金電極應用在微生物燃料電池。在奈米碳管電極上,主要是在奈米碳管表面進行修飾,以利於生物相容性並進一步應用在神經電極的感測,達到長時間使用的效果,這對於神經科學與神經疾病的應用有相當大的貢獻,如深腦模擬、帕金森斯症與癲癇等。而在白金電極部分,希望將生物應用於能源上,主要是利用不同製程製作之白金電極材料,並以微生物作為生物催化劑,應用於微生物燃料電池並比較其效能。所以,本研究是希望能對於再生能源研究,能夠注入一股新力。
    在第一個部分的研究成果,包括成功的將多壁奈米碳管 (multi-walled carbob nanotubes, MWCNTs)表面進行改質,在多壁奈米碳管表面形成帶有氨基正電荷 (NH2+)的表面,而有利於神經細胞 (neuronal cells)的附著與生長,且適用於細胞外訊號紀錄 (extracellular recording)。此外,由於多壁奈米碳管表面經由氨基官能基化後,表面變為更加親水,可降低奈米碳管電極在水溶液中量測的阻抗(impedance)與增加其電容 (capacitance)特性。在奈米碳管電極耐用性 (durability)的測試中,結果顯示奈米碳管表面經由2 wt% 1,4-二氨基丁烷 (1,4-diaminobutane)改質後,此氨基官能基化後的奈米碳管電極,在螯蝦 (crayfish)的神經訊號量測中,有較佳的訊噪比 (126),即使在空氣中保存六個月,其電性效果仍可維持不變,本研究結果顯示此奈米碳管電極可應用於長期量測神經訊號的使用。此外,氨基官能基化後的奈米碳管不需要披覆poly-L-lysine (PLL),就可以讓海馬迴神經細胞 (hippocampals)生長在奈米碳管電極表面上。且在本研究中,只要利用化學氣相沉積法 (chemical vapor deposition, CVD)低溫 ( 400 C)成長,自我排列 (self-aligned)的奈米碳管在矽基底 (Si-based)上,並且直接在矽基底上成長的奈米碳管進行氨基官能基改質,作為神經電極的應用,而此製程也可與IC製程相容並予以整合。
    在第二個部分,利用不同方法沉積白金 (Pt)在碳布 (carbon cloh)上,作為微生物燃料電池 (microbial fuel cell)的陰極 (cathode),其白金沉積的方法包含電鍍 (elecrodeposition)、電子槍蒸鍍 (e-gun)與濺鍍 (sputtering)。結果顯示藉由電鍍方式沉積的白金電極,有較佳的氫氣吸附活性 (activity efficiency),由X光光電子能譜儀 (XPS)分峰 (peak fitting)結果顯示,電鍍的白金電極有較多的金屬態白金 (Pt (0))含量,及具有較高的催化活性 (activity of catalyst)。更進一步的利用循環伏安法 (CV)量測,得到電鍍的白金電極,有較大的白金表面吸附活性面積 (active surface area),其原因可能是因為電鍍的白金有較小的顆粒形狀大小,造成較大的催化活性。此外,藉由化學阻抗分析 (EIS),在0.1 Hz頻率下,電鍍的白金電極得到較低的阻抗。而應用於微生物燃料電池的系統中,電鍍的白金電極可得到較高的功率密度 (power density),並且其他白金沉積方式,電鍍的白金電極有最少的白金含量。因此,由以上的分析結果,電鍍的白金電極顯示優異的效果,有進一步作為燃料電池應用的潛力。


    摘要 1 Abstract 4 誌謝 6 Contents 10 List of Figures 14 List of Tables 20 1 Fuctionalized Carbon Nanotubes as a Neural Electrode 22 1.1 Introduction of Neural Electrode 22 1.2 Literature Review of Neural Electrode 22 1.2.1 Conventional electrodes 22 1.2.2 CNT properties 27 1.2.3 CNT-elecrodes 30 1.2.4 Surface modification of CNT-electrode 32 1.2.4.1 Polymer coating of CNT-electrode 33 1.2.4.2 Chemical functionalization of CNT-electrode 35 1.3 Experimental Procedures and Instruments of Neural Electrode 37 1.3.1 Experimental procedures 37 1.3.1.1 MWCNT electrode fabrication and modification 37 1.3.2 Experimental instruments 39 1.3.2.1 X-ray photoelectron spectroscopy (XPS) 39 1.3.2.2 Scanning electron microscopy (SEM) 40 1.3.2.3 Transmission electron microscopy (TEM) 41 1.3.2.4 Micro-Raman spectroscopy (-Raman) 42 1.3.2.5 Contact angle system 43 1.3.2.6 Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) 43 1.3.2.7 Neural signal measurement 44 1.3.2.8 Cell culture for biocompatibility tests 45 1.4 Results and Discussion of Neural Electrode 47 1.4.1 XPS spectra of neural electrode 47 1.4.2 Amino-functionalized CNT-electrode 48 1.4.3 Cell culture for biocompatibility tests of neural electrode 53 1.4.4 Morphology and structure of amino-functionalized CNT-electrode 59 1.4.5 Electrochemical characterization and neural signal recording of neural electrode 63 1.5 Conclusions of Neural Electrode 69 2 Platinum Film as an Electrode for Microbial Fuel Cell 70 2.1 Introduction of Microbial fuel cell 70 2.1.1 History of microbial fuel cell 70 2.1.2 Mechanism of microbial fuel cell 71 2.1.2.1 Nanowires electron tansfer 72 2.1.2.2 Cell-surface electron transfer 72 2.1.2.3 Mediator electron transfer 72 2.1.3 MFC components 73 2.1.3.1 Two-component MFC systems 73 2.1.3.2 Single-component MFC systems 74 2.1.4 The influenced factors of MFC performance 75 2.1.4.1 Activation losses 76 2.1.4.2 Ohmic losses 77 2.1.4.3 Concenetration losses 77 2.2 Literature Review of Microbial Fuel Cell 78 2.2.3 Cathodic catalyst of MFC 78 2.2.3.1 Non-Pt catalyst 78 2.2.3.2 Pt catalyst 80 2.3 Experimental Procedures and Instruments of Microbial Fuel Cell 82 2.3.1 Experimental procedures 82 2.3.1.1 Electrode preparation 82 2.3.1.2 Bacteria growth 83 2.3.2 Experimental instruments 83 2.3.2.1 X-ray photoelectron spectroscopy (XPS) 86 2.3.2.2 Scanning electron microscope (SEM) 86 2.3.2.3 Grazing-incident X-ray diffractometeer (GIXRD) 87 2.3.2.4 Electrodepostion system 88 2.3.2.5 Inductive coupled plasma-mass spectrometer (ICP-MS) 89 2.3.2.6 Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) 90 2.4 Results and Discussion of Microbial Fuel Cell 91 2.4.1 Optimization of the operation parameters of MFC 91 2.4.1.1 The methodes of bacterial culture with electrodes 91 2.4.1.2 Bacteria types 92 2.4.1.3 Different culturing duration of bacteria 93 2.4.1.4 O2 atmosphere in bacteria/LB solution 95 2.4.1.5 Measurement system 95 2.4.1.6 Three different anodes for MFC 97 2.4.1.7 The different cathodes for MFC 98 2.4.2 Surface charaterization of carbon cloth, a-CC, and various Pt/a-CC 100 2.4.3 Structure and morphology of Pt/a-CC 103 2.4.4 EIS of Pt/a-CC for MFC 105 2.4.5 Performance of MFC with different cathodes and Pt loading 107 2.4.6 Electrochemical characterization of Pt deposited on carbon cloth 109 2.5 Conclusions of Microbial Fuel Cell 113 3 Summary 114 4 Future Prospects 116 References 118 Publication List 133

    [1] Bardi, G., Tognini, P., Ciofani, G., Raffa, V., Costa, M., Pizzorusso, T., 2009. Biol. Med. 5, 96-104.
    [2] Krishnan, A., Dujardin, E., Ebbesen, T. W. Yianilos, P. N., Treacy, M. M. J., 1998. Physical Review B 58, 14013-14019.
    [3] Lobo, A.O., Antunes, E.F., Palma, M.B.S., Pacheco-Soares, C., Trava-Airoldi, V.J., Corat, E.J., 2008. Mater. Sci. Engine. C 28, 532-538.
    [4] Shoval, A., Adams, C., David-Pur, M., Shein, M., Hanein, Y., Sernagor, E., 2009. Front. Neuroendocrinol. 2, 1-8.
    [5] Sorkin, R., Greenbaum, A., David-Pur, M, Anava, S., Ayali, A., Ben-Jacob, E., Hanein, Y., 2009. Nanotechnol. 20, 1-8.
    [6] Kotov, N.A., Winter, J.O., Clements, I.P., Jan, E., Timko, B.P., Campidelli, S., Pathak, S., Mazzatenta, A., Lieber, C.M., Prato, M., Bellamkonda, R.V., Silva, G.A., Shi Kam, N.W., Patolsky, F., Ballerini, L., 2009. Adv. Mater. 21, 3970-4004.
    [7] Cellot, G., Cilia, E., Cipollone, S., Rancic, C., Sucapane, A., Giordani, S., Gambazzi, L., Markram, H., Grandolfo, M., Scaini, D., Gelain, F., Casalis, L., Prato, M., Giugliano, M., Ballerini, L., 2009. Nat. Nanotechnol. 4, 126-133.
    [8] Lovat, V., Pantarotto, D., Lagostena, L., Cacciari, B., Grandolfo, M., Righi, M., Spalluto, G., Prato, M., Ballerini, L., 2005. Nano. Lett. 5, 1107-1110.
    [9] Ben-Jacob, E., Hanein, Y., 2008. J Mater. Chem. 18, 5181-5186.
    [10] Hu, H., Ni, Y., Montana, V., Haddon, R.C., Parpura, V., 2004. Nano. Nano. Lett. 4, 507-511.
    [11] Zhang, X., Prasad, S., Niyogi, S., Morgan, A., Ozkan, M., Ozkan, C.S., 2005. Sensor. Actuat. B 106, 843-850.
    [12] Gabay, T., Ben-David, M., Kalifa, I., Sorkin, R., Abrams, Z.R., Ben-Jacob, E., Hanein, Y., 2007. Nanotechnol. 18, 1-6.
    [13] Keefer, E.W., Botterman, B.R., Romero, M.I., Rossi, A.F., Gross, G.W., 2008. Nat. Nanotechnol. 3, 434-439.
    [14] Hsu, H.L., Teng, I.J., Chen, Y.C., Hsu, W.L., Lee, Y.T., Yen, S.J., Su, H.C., Yeh, S.R., Chen, H., Yew, T.R., 2010. Adv. Mater. 22, 1-5.
    [15] Lin, C.M., Lee, Y.T., Yeh, S.R., Fang, W.L., 2009. Biosens. Bioelectron. 24, 2791-2797.
    [16] Biran, R., Martin, D.C., Tresco, P.A., 2005. Exp. Neurol. 195, 115-126.
    [17] Minnikanti, S., Skeath, P., Peixoto, N., 2009. Carbon 47, 884-893.
    [18] Xu, Z., Hu, P.A., Wang, S., Wang, X., 2008. Appl. Surf. Sci. 254, 1915-1918.
    [19] Zhang, T., Xu, M., He, L., Xi, K., Gu, M., Jiang, Z., 2008. Carbon 46, 1782-1791.
    [20] Correa-Duarte, M.A., Wagner, N., Rojas-Chapana, J., Morsczeck, C., Thie, M., Giersig, M., 2004. Nano. Lett. 4, 2233-2236.
    [21] Lobo, A.O., Antunes, E.F., Machado, A.H.A., Pacheco-Soares, C., Trava-Airoldi, V.J., Corat, E., 2008. Mater. Sci. Engine. C 28, 264-269.
    [22] Jan, E., Hendricks, J.L., Husaini, V., Richardson-Burns, S.M., Sereno, A., Martin, D.C., Kotov, N.A., 2009. Nano. Lett. 9, 4012-4018.
    [23] Gheith, M.K., Pappas, T.C., Liopo, A.V., Sinani, V.A., Shim, B.S., Motamedi, M., Wicksted, J.P., Kotov, N.A., 2006. Adv. Mater. 18, 2975-2979.
    [24] Sham, M.L., Kim, J.K., 2006. Carbon 44, 768-777.
    [25] Gailllard, C., Cellot, G., Li, S., Toma, F.M., Dumortier, H., Spalluto, G., Cacciari, B., Prato, M., Ballerini, L., Bianco, A., 2009. Adv. Mater. 21, 2903-2908.
    [26] Mazzatenta, A., Giugliano, M., Campidelli, S., Gambazzi, L., Businaro, L., Markram, H., Prato, M., Ballerini, L., 2007. J Neurosci. 27, 6931-6936.
    [27] Malarkey, E.B., Fisher, K.A., Bekyarova, E., Liu, W., Haddon, R.C., Parpura, V., 2009. Nano. Lett. 9, 264-268.
    [28] Zhao, B., Hu, H., Yu, A., Perea, D., Haddon, R.C., 2005. J Am. Chem. Soc. 127, 8197-8203.
    [29] Su, H.C., Chen, C.H., Chen, Y.C., Yao, D.J., Chen, H., Chang, Y.C., Yew, T.R., 2010. Carbon 48, 805-812.
    [30] Hubel, D.H., 1957. Science 125, 549-550.
    [31] Loeb, G.E., Peck, R.A., Martyniuk, J., 1995. J. Neurosci. Meth. 63, 175-183.
    [32] Wise, K.D., 2005. IEEE Eng. Med. Biol. 24, 22-29.
    [33] Normann, R.A., 2007. Nat. Clin. Pract.e Neuro. 3, 444-452.
    [34] Cheung, K.C., 2007. Biomed. Microdevices 9, 923-938.
    [35] Iijima, S., 1991. Nature 354, 56-58.
    [36] Durkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S., 2004. Nano Lett. 4, 35-39.
    [37] Yao, Z., Kane, C.L., Dekker, C., 2000. Phys. Rev. Lett. 84, 2941-2944.
    [38] Hone, J., Whitney, M., Zettl, A., 1999. Synthetic Met. 103, 2498-2499.
    [39] Dresselhaus,M.S., Dresselhaus, G., Eklund, P.C., Science of Fullerenes and Carbon Nanotubes. Academic, New York, 1996, 765-802.
    [40] Bonard, J.M., Salvetat, J.P., Stockli, T., de Heer, W.A., Forro, L., Chatelain, A., 1998. Appl. Phys. Lett. 73, 918-920.
    [41] Teo, K.B.K., Singh, C., Chhowalla, M., Milne, W.I., 2003. Encyclopedia of Nanosci. Nanotechnol. 1.
    [42] Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M., 1998. Nature 391, 62-64.
    [43] Li, J., Ng, H.T., Cassell, A., Fan, W., Chen, H., Ye, Q., Koehne, J., Han, J., Meyyappan,M., 2003. Nano Lett. 3, 597-602.
    [44] Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy,M.M.J., 1998. Physical Review B 58, 14013-14019.
    [45] Tans, S.J., Verschueren, A.R.M., Dekker, C., 1998. Nature 393, 49-52.
    [46] Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P., 1998. Appl. Phys. Lett. 73, 2447-2449.
    [47] Lim, S.C., Choi, L.C., Jeong, H.J., Shin, Y.M., An, K.H., Bae, D.J., 2001. Adv. Mater. 13, 1563-1567.
    [48] Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., Chang, R.P.H., 1998. Appl. Phys. Lett. 72, 2912-2913.
    [49] Besteman, K., Lee, J.O., Wiertz, F.G.M., Heering, H.A., Dekker, C., 2003. Nano Lett. 3, 727-730.
    [50] Dai, H.J., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley. R.E., 1996. Nature 384,147-150.
    [51] Wang, K., Fishman, H.A., Dai, H.J., Harris, J.S., 2006. Nano Lett. 6, 2043-2048.
    [52] Gabay, T., Ben-David, M., Kalifa, I., Sorkin, R., Abrams, Z.R., Ben-Jacob, E., Hanein, Y., 2007. Nanotechnol. 18, 035201-1-6.
    [53] Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C., Science of fullerences & carbon Nanotubes. 2000. San Diego: Academic Press.
    [54] Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J., 1998. Phys. Rev. B 58, 14013-14019.
    [55] Musameh, M., Lawrence, N.S., Wang, J., 2005. Electrochem. Commun. 7, 14-18.
    [56] Shanmugam, S., Gedanken, A., 2006. Electrochem. Commun., 8, 1099-1105.
    [57] Gooding, J.J., 2005. Electrochim. Acta, 50, 3049-3060.
    [58] Keohan, F., Wei, X.F., Wongsarnpigoon, A., Lazaro, E., Darga, J.E., Grill, W.M., 2007. J. Biomater. Sci, Polym. Edition, 18, 1057-1073.
    [59] Yeh, S.R., Chen, Y.C., Su, H.C., Yew, T.R., Kao, H.H., Lee, Y.T., Liu, T.A., Chen, H., Chang, Y.C., Chang, P., Chen, H., 2009. Langmuir 25, 7718-7724.
    [60] Nugent, J.M., Santhanam, K.S.V., Rubio, A., Ajayan, P.M., 2001. Nano Lett. 1, 87-91.
    [61] Wessling, B., Besmehn, A., Mokwa, W., Schnakenberg, U., 2007. J. Electrochem. Soc. 154, 83-89.
    [62] Lee, I.S., Whang, C.N., Park, J.C., Lee, D.H., Seo, W.S., 2003. Biomaterials 24, 2225-2231.
    [63] Mattson, M.P., Haddon, R.C., Rao, A.M., 2000. J. Mol. Neurosci. 14, 175-182.
    [64] Gheith, M.K., Sinani, V.A., Wicksted, J.P., Matts, R.l., Kotov, N.A., 2005. Adv. Mater. 17, 2663-2670.
    [65] Hu, H., Ni, Y., Mandal, S.K., Montana, V., Zhao, B., Haddon, R.C., Parpura, V., 2005. J. Phys. Chem. B 109, 4285-4289.
    [66] McCreery, D.B., Agnew, W.F., Yuen, T.G., Bullara, L., 1990. IEEE Trans. Biomed. Eng. 37, 996.
    [67] Azemi, E., Stauffer, W.R., Gostock, M.S., Lagenaur, C.F., Cui, X.T., 2008. Acta Biomater. 4, 1208-1217.
    [68] Nguyen-Vu, T.D.B., Chen, H., Cassell, A.M., Andrews, R., Meyyappan, M., Li, J., 2006. Small 2, 89-94.
    [69] Cheran, L.E., Benvenuto, P., Thompson, M., 2008. Chem. Soc. Rev. 37, 1229-1242.
    [70] Chen, C.H., Su, H.C., Chuang, S.C., Yen, S.J., Chen, Y.C., Lee, Y.T., Yew, T.R., Chen, H., Yeh, S.R., Chang, Y.C., Yao, D.J., 2010. Nanotechnol. 21, 1-10.
    [71] Vickerman, J.C., “Surface Analysis-The Principle Techniques”, John Wiley & Sons 1997.
    [72] Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., 1998. Science 282, 1105-1107.
    [73] Okita, A., Suda, Y., Oda, A., Nakamura, J., Ozeki, A., Bhattacharyya, K., 2007. Carbon 45, 1518-1526.
    [74] Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Souza Filho, A.G., Saito, R., 2002. Carbon 40, 2043-2061.
    [75] Endo, M., Kim, Y.A., Fukai, Y., Hayashi, T., Terrones, M., Terrones, H., 2001. Appl. Phys. Lett. 79, 1531-1533.
    [76] Bahar, S., 2003. Boil. Cybern. 89, 200-213.
    [77] Rodriguez-sosa, L., Calderon-rosete, G., Flores, G., Porras, M.G., 2007. Synapse 61, 801-808.
    [78] Cheng, W.Y., Hsu, W.L., Cheng, H.H., Huang, Z.H., Chang, Y.C., 2009. Anal. Biochem. 386, 105-112.
    [79] Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C., 2008. Carbon 46, 833-840.
    [80] Lee, W.H., Kim, S.J., Lee, W.J., Haddon, R.C., Reucroft, P.J., 2001. Appl. Surf. Sci. 181, 121-127.
    [81] Lee, S.W., Kim, B.S., Chen, S., Shao-Horn, Y., Hammond, P.T., 2008. J Am. Chem. Soc. 131, 671-679.
    [82] Su, H.C., Lin, C.M., Yen, S.J., Chen, Y.C., Chen, C.H., Yeh, S.R., Fang, W.L., Chen, H., Yao, D.J., Chang, Y.C., Yew, T.R., 2010. Biosens. Bioelectron. 26, 220-227.
    [83] Li, P., Lim, X., Zhu, Y., Yu, T., Ong, C.-K., Shen, Z., Wee, A.T-S., Sow, C.H., 2007. J Phys. Chem. B 111, 1672-1678.
    [84] Ramanathan, T., Fisher, F.T., Ruoff, R.S., Brinson, L.C., 2005. Chem. Mater. 17, 1290-1295.
    [85] Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M., 2007. Compos. A 38, 1331-1336.
    [86] He, W., Bellamkonda, R.V., 2005. Biomaterials 26, 2983-2990.
    [87] Shukla, A.K., Suresh, S., Berchmans, S., Rajendran, A., 2004. Current Science 87, 455-468.
    [88] Logan, B.E., Microbial Fuel Cells Academic, New Jersey, 2007, 4-6.
    [89] Du, Z., Li, H., Gu, T., 2007. Biotechnol. Adv. 25, 464-482.
    [90] Habermann, W., Pommer, E.H., 1991. Appl. MicroBiol. Biot. 35, 128-133.
    [91] Kim, H.J., Hyun, M.S., Chang, I.S., Kim, B.H., 1999. J. Microbiol. Biotechnol. 9, 365-367.
    [92] Kim, B.H., Park, D.H., Shin, P.K., Chang, I.S., Kim, H.J., 1999. Mediator-less biofuel cell U.S. patent, 5976719.
    [93] Liu, H., Ramnarayanan, R., Logan, B.E., 2004. Environ. Sci. Technol. 38, 2281-2285.
    [94] Tsai, H.Y., Wu, C.C., Lee, C.Y., Shih, E.P., 2009. J. Power Sources 194, 199-205.
    [95] Jang, J.K., Pham, T.H., Chang, I.S., Kang, K.H., Moon, H., Cho, K.S., Kim, B.H., 2004. Process Biochem. 39, 1007-1012.
    [96] Rabaey, K., Lissens, G., Siciliano, S.D., Verstraete, W., 2003. Biotechnol. Lett. 20,1531-1535.
    [97] Rabaey, K., Verstraete, W., 2005. Trends Biotechnol. 20,1531-1535.
    [98] Gorby, Y.A., Beveridge, T.J., Composition, reactivity, and regulation of extracellular metal-reducing structures (nanowires) produced by dissimilatory metal reducing bacteria, Warrenton, 2005, VA.
    [99] Beliaev, A.S., Saffarini, D.A., 1998. J. Bacteriol. 180, 6292-6297.
    [100] Myers, J.M., Myers, C.R., 2000. J. Bacteriol. 182, 67-75.
    [101] Lower, S.K., Hochella, M.F., Beveridge, T.J., 2001. Science 292, 1360-1363.
    [102] Park, D.H., Laivenieks, M., Guettler, M.V., Jain, M.K., Zeikus, J.G., 1999. Appl. Environ. Microbiol. 65, 2912-2917.
    [103] Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R., 2002. Science 295, 483-485.
    [104] Logan, B.E., 2004. Environ. Sci. Technol. 38, 160-167.
    [105] Lies, D.P., Hernandez, M.E., Kappler, A., Mielke, R.E., Gralnick, J.A., Newman, D.K., 2005. Appl. Environ. Microbiol. 71, 4414-4426.
    [106] Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.F., Saffrini, D.A., Hill, E.A., Shi, L., Elisa, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B.E., Nealson, K.A., Fredricjson, J.K., 2006. PANS 103, 11358-11363.
    [107] Rismani-Yazdi, H., Carver, S.M., Christy, A.D., Tuovunen, O.H., 2008. J. Power Sources 180, 683-694.
    [108] Wang, L., Liang, P., Zhang, J., Huang, X., 2011. Bioresource Technol. 102, 5093-5097.
    [109] Zhou, M., Chi, M., Luo, J., He, H., Jin, T., 2011. J. Power Sources 196, 4427-4435.
    [110] Wang, X., Cheng, S., Zhang, X., Li, X.Y., Logan, B.E., 2011. Int. J. Hydrogen Enegy. 36, 13900-13906.
    [111] Zhang, F., Cheng, S., Pant, D., Bogaert, G.V., Logan, B.E., 2009. ElectroChem. Commun. 11, 2177-2179.
    [112] Birry, L., Mehta, P., Jaouen, F., Dodelet, J.P., Guiot, S.R., Tartakovsky, B., 2011. Electrochim. Acta 56, 1505-1511.
    [113] Duteanu, N., Erable, B., Senthil Kumar, S.M., Ghangrekar, M.M., Scott, K., 2010. Bioresource Technol. 101, 5250-5255.
    [114] Biffinger, J.C., Pietron, J., Ray, R., Little, B., Ringeisen, B.R., 2007. Biosens. Bioelectron. 22, 1672-1679.
    [115] Dumitru, A., Morozan, A., Ghiurea, M., Scott, K., Vulpe, S., 2008. Phys. Stat. Sol. 205, 1484-1487.
    [116] Feng, C., Ma, L., Li, F., Mai, H., Lang, X., Fan, S., 2010. Biosens. Bioelectron. 25, 1516-1520.
    [117] Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., Fan, M., 2011. Biosens. Bioelectron. 26, 3000-3004.
    [118] Cheng, S., Logan, B.E., 2007. ElectroChem. Commun. 9, 492-496.
    [119] Logan, B.E., 2009. Nat. Rev. Microbiol. 7 , 375-381.
    [120] Gil, G.H., Chang, I.S., Kim, B.H., Kim, M., Jang, J.K., Park, H.S., Kim, H.J., 2003. Biosens. Bioelectron. 18, 327-334.
    [121] He, Z., Minteer, S.D., Angenent, L.T., 2005. Environ. Sci. Technol. 39, 5262-5267.
    [122] Liu, H., Cheng, S., Logan, B.E., 2005. Environ. Sci. Technol. 39, 5488-5493.
    [123] Min, B., Kim, J.R., Oh, S.E., Regan, J.M., Logan, B.E., 2005. Water Res. 39, 4961-4968.
    [124] Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K., 2006. Environ. Sci. Technol. 40, 5181-5192.
    [125] Zhang, Y., Mo, G., Li, X., Ye, J., 2012. J. Power Sources 197, 93-96.
    [126] Zhang, L., Liu, C., Zhuang, L., Li, W., Zhou, S., Zhang, J., 2009. Biosens. Bioelectron. 24, 2825-2829.
    [127] Mahmmoud, M., Gad-Allah, T.A., El-Khatib, K.M., El-Gohary, F., 2011. Bioresource Technol. 102, 10459-10464.
    [128] Hrapovic, S., Manuel, M.F., Luong, J.H.T., Guiot, S.R., Tartakovsky, B., 2010. Int. J. Hydrogen Enegy. 35, 7313-7320.
    [129] Selembo, P.A., Merrill, M.D., Logan, B.E., 2010. Int. J. Hydrogen Enegy. 35, 428-437.
    [130] Liu, J., Feng, Y., Wang, X., Yang, Q., Shi, X., Qu, Y., Ren, N., 2012. J. Power Sources 198, 100-104.
    [131] Kim, J.R., Kim, J.Y., Han, S.B., Park, K.W., Saratale, G.D., Oh, S.E., 2011. Bioresource Technol. 102, 342-347.
    [132] Yu, E.H., Cheng, S., Scott, K., Logan, B.E., 2007. J. Power Sources 171, 275-281.
    [133] Erable, B., Etcheverry, L., Bergel, A., 2009. ElectroChem. Commun. 11, 619-622.
    [134] Neburchilov, V., Mehta, P., Hussain, A., Wang, H., Guiot, S.R., Tartakovsky, B., 2011. Int. J. Hydrogen Enegy. 36, 11929-11935.
    [135] Martin, E., Tartakovsky, B., Savadogo, O., 2011. Electrochim. Acta 58, 58-66.
    [136] Lu, A., Li, Y., Jin, S., Ding, H., Zeng, C, Wang, X., Wang, C., 2010. Energy Fuels 24, 1184-1190.
    [137] An, J., Jeon, H., Lee, J., Chang, I.S., 2011. Environ. Sci. Technol. 45, 5441-5446.
    [138] Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P., Herrmann, I., 2005. Electrochem. Commun. 7, 1405-1410.
    [139] Cheng, S., Liu, H., Logan, B.E., 2006. Environ. Sci. Technol. 40, 364-369.
    [140] Lefebvre, O., Ooi, W.K., Tang, Z., Abdullah-Al-Mamun, M., Chua, D.H.C., Ng, H.Y., 2009. Biosource Technol. 100, 4907-4910.
    [141] Liu, J.L., Feng, Y., Wang, X., Shi, X., Yang, Q., Lee, H., Zhang, Z., Ren, N., 2011. J. Power Sources 196, 8409-8412.
    [142] Yang, S., Jia, B., Liu, H., 2009. Biosource Technol. 100, 1197-1202.
    [143] Cheng, S., Liu, H., Logan, B.E., 2006. Electrochem. Commun. 8, 489-494.
    [144] Wang, H., Wu, Z., Plaseied, A., Jenkins, P., Simpson, L., Engtrakul, C., Ren, Z., 2011. J. Power Sources 196, 7465-7469.
    [145] Sanchez, D.V.P., Huynh, P., Kozlov, M.E., Baughman, R.H., Vidic, R.D., Yun, M., 2010. Energy Fuels 24, 5897-5902.
    [146] Tsai, M.C., Yeh, T.K., Juang, Z.Y., Tsai, C.H., 2007. Carbon. 45, 383-389.
    [147] Tsai, M.C., Yeh, T.K., Tsai, C.H., 2011. Int. J. Hydrogen Enegy. 36, 8261-8266.
    [148] Vickerman, J.C., “Surface Analysis-The Principle Techniques”, John Wiley & Sons 1997.
    [149] Ahn, H.J., Lee, J.H., Jeong, Y., Lee, J.H., Chi, C.S., Oh, H.J., 2007. Mater. Sci. Eng. A 449-451, 841-845.
    [150] Oh, H.J., Lee, J.H., Ahn, H.J., Jeong, Y., Kim, Y.J., Chi, C.S., 2006. Thin Solid Films 515, 220-225.
    [151] Polovina, M., Babic, B., Kaluderovic, B., Dekanski, A., 1997. Carbon 35, 1047-1052.
    [152] Liu, Z., Lee, J.Y., Han, M., Chen, W., Gan, L.M., 2002. J. Mater. Chem. 12, 2453-2458.
    [153] Parkinson, C.R., Walker, M., McConville, C.F., 2003. Surf. Sci. 545, 19-33.
    [154] Zhang, X., Chan, K.Y., 2003. Chem. Mater. 15, 451-459.
    [155] Lasch, K., Hayn, G., Jorissen, L., Garche, J., Besenhardt, O., 2002. J. Power Sources 105, 305-310.
    [156] Radmilovic, V., Gasteiger, H.A., Ross, Jr., P.N., 1995. J. Catal. 154, 98-106.
    [157] Su, H.C., Lin, C.M., Yen, S.J., Chen, Y.C., Chen, C.H., Yeh, S.R., Fang, W.L., Chen, H., Yao, D.J., Chang, Y.C., Yew, T.R., 2010. Biosens. Bioelectron. 26, 220-227.
    [158] Liu, Z., Lee, J.Y., Chen, W., Han, M., Gan, L.M., 2004. Langmuir 20, 181-187.
    [159] Liu, Z., Gan, L.M., Hong, L., Chen, W., Lee, J.Y., 2005. J. Power Sources 139, 73-78.
    [160] Vielstich, W., Lamm, A., Gasteiger, H.A., 2003. New-York: John Wiley & Sons 2, 306-307.
    [161] De Miguel, S.R., Scelza, O.A., Roman-Martinez, M.C., Salinnas-Martinez de Lecea, C., Cazorla-Amoros, D., Linares-Solano, A., 1998. Appl. Catal. A-Gen. 170, 93-103.
    [162] Shukla, A.K., Neergat, M., Bera, P., Jayaram, V., Hegde, M.S., 2001. J. Electroanal. Chem. 504, 111-119.
    [163] Arico, A.S., Shukla, A.K., Kim, H., Park, S., Min, M., Antonucci, V., 2001. Appl. Surf. Sci. 172, 33-40.
    [164] Li, N.H., Sun, S.G., Chen, S.P., 1997. J. Electroanal. Chem. 430, 57-67.
    [165] Yoshida, H., Yazawa, Y., Hattori, T., 2003. Catal. Today 87, 19-28.
    [166] Xu, C., Lemon, W., Liu, C., 2002. Sensor Actuat A 96, 78-85.
    [167] Seymour, J.P., Elkasabi, Y.M., Chen, H.Y., Lahann, J., Kipke, D.R., 2009. Biomaterials 30, 6158-6167.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE