研究生: |
黃永睿 Yuan-Ruei Huang |
---|---|
論文名稱: |
果蠅成蟲的蕈狀體神經細胞特性 Characterization of Mushroom Body Neurons in Drosophila adults |
指導教授: |
江安世
Ann-Shyn Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 蕈狀體 、果蠅 、乙醯膽鹼 、珈瑪氨基丁酸 、20-羥基蛻皮激素 、計數方法 、成蟲 |
外文關鍵詞: | mushroom bodies, Drosophila, acetylcholine, GABA, 20-hydroxyecdysone, adult, Kenyon cells |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
果蠅蕈狀體 (mushroom bodies) 是一成對的腦區, 各自由約2500 個
Kenyon cells 所組成, 而依據在蕈狀體中所構成的區域, Kenyon cells 可以細分成5 種類型, 分別稱為珈瑪 (γ KCs), 阿法’/貝塔’ (α’/β’ KCs), 前趨阿法/貝塔(pioneer α/β KCs), 早期阿法/貝塔 (early α/β KCs) 以及晚期阿法/貝塔Kenyon
cells (late α/β KCs), 然而尚未有研究指出這5 種細胞的數目.而目前已知在果蠅, 蕈狀體參與和嗅覺連結相關的學習記憶. 雖然已經證明短期記憶的提取需要Kenyon cells 向外的訊息傳遞, 但是Kenyon cells 釋放何種神經傳導物質依舊未可得知. 我們將綠色螢光蛋白 (GFP) 表現在各類型Kenyon cells 的細胞核並且結合新的計數方法, 判定Kenyon cells 共有約2700 顆, 其中有870 顆珈瑪細
胞, 420 顆阿法’/貝塔’細胞, 90 前趨阿法/貝塔細胞, 480 早期阿法/貝塔細胞以及860 晚期阿法/貝塔Kenyon cells. 我們亦使用了遺傳調控方法, 發現大多數的Kenyon cells 使用乙醯膽鹼 (acetylcholine) 作為神經傳導物質, 一小部分的則釋放珈瑪氨基丁酸 (γ-aminobutyric acid), 而某些則會同時使用兩種神經傳導物
質. 另外, 為了治療神經退化性疾病, 我們測試昆蟲20-羥基蛻皮激素(20-hydroxyecdysone) 是否能在果蠅成蟲增加Kenyon cells 的數量. 剛羽化的成蟲經過五天的餵食, 阿法’/貝塔’細胞數目大幅增加百分之20, 珈瑪細胞減少百分之10, 前趨阿法/貝塔和早期阿法/貝塔細胞數目則有些許的改變. 依據我們的實驗結果, 建立了一個可以有效分析細胞數目變異的研究模式, 並且提供具有發展潛力的藥物治療方法.
Mushroom bodies (MBs) formed via sequential birth of five classes of Kenyon cells (KCs) are essential for normal olfactory learning in Drosophila adults. Without knowing the type of neurotransmitter(s) released by KCs, MB outputs have been shown to be required for the retrieval of short-term memory. Here, using genetic reporters together with a total counting method, I determine how many KCs are cholinergic and how many are GABAergic in each of the five KC classes. Using nuclear localization green fluorescent protein (nls-GFP) as a reporter, I found that a MB has about 2700 KCs composed of roughly 870 γ neurons, 420 α’/β’
neurons, 90 pioneer α/β neurons, 480 early α/β neurons, and 860 late α/β neurons. I also found that most KCs are cholinergic while some KCs may be both cholinergic
and GABAergic. To ameliorate brain neurodegenerative diseases, I tested if the steroid hormone 20-hydroxyecdysone (20E) has a mitogenic effect on KCs in
Drosophila adults. After feeding 20E for 5 days, the total number of α’/β’ neurons increases nearly 20%, γ neurons decreases about 10% while the other three KC classes show slight changes. The implication of mitogenic manipulation of brain cells to ameliorate aging related memory loss and brain neurodegenerative diseases are discussed.
Champlin DT, Truman JW. 1998. Ecdysteroid control of cell proliferation during
optic lobe neurogenesis in the moth Manduca sexta. Development
125(2):269-277.
Dickinson-Anson H, Winkler J, Fisher LJ, Song HJ, Poo M, Gage FH. 2003.
Acetylcholine-secreting cells improve age-induced memory deficits. Mol
Ther 8(1):51-61.
Dubnau J, Grady L, Kitamoto T, Tully T. 2001. Disruption of neurotransmission in
Drosophila mushroom body blocks retrieval but not acquisition of memory.
Nature 411(6836):476-480.
Dubrovsky EB. 2005. Hormonal cross talk in insect development. Trends
Endocrinol Metab 16(1):6-11.
Fujiwara H, Ogai S. 2001. Ecdysteroid-induced programmed cell death and cell
proliferation during pupal wing development of the silkworm, Bombyx mori.
Dev Genes Evol 211(3):118-123.
Gade G, Hoffmann KH, Spring JH. 1997. Hormonal regulation in insects: facts, gaps,
and future directions. Physiol Rev 77(4):963-1032.
Ganeshina O, Menzel R. 2001. GABA-immunoreactive neurons in the mushroom
bodies of the honeybee: an electron microscopic study. J Comp Neurol
437(3):335-349.
Greeve I, Kretzschmar D, Tschape JA, Beyn A, Brellinger C, Schweizer M, Nitsch
RM, Reifegerste R. 2004. Age-dependent neurodegeneration and
Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci
24(16):3899-3906.
Gruntenko NE, Karpova EK, Adonyeva NV, Chentsova NA, Faddeeva NV, Alekseev
AA, Rauschenbach IY. 2005. Juvenile hormone, 20-hydroxyecdysone and
dopamine interaction in Drosophila virilis reproduction under normal and
nutritional stress conditions. J Insect Physiol 51(4):417-425.
Gu SH, Tsia WH, Chiang AS, Chow YS. 1999. Mitogenic effects of
20-hydroxyecdysone on neurogenesis in adult mushroom bodies of the
cockroach, Diploptera punctata. J Neurobiol 39(2):264-274.
Heisenberg M, Heusipp M, Wanke C. 1995. Structural plasticity in the Drosophila
brain. J Neurosci 15(3 Pt 1):1951-1960.
Hironaka N, Tanaka K, Izaki Y, Hori K, Nomura M. 2001. Memory-related
acetylcholine efflux from rat prefrontal cortex and hippocampus: a
microdialysis study. Brain Res 901(1-2):143-150.
Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D. 1997. The Drosophila
mushroom body is a quadruple structure of clonal units each of which
39
contains a virtually identical set of neurones and glial cells. Development
124(4):761-771.
Koyama T, Iwami M, Sakurai S. 2004. Ecdysteroid control of cell cycle and cellular
commitment in insect wing imaginal discs. Mol Cell Endocrinol
213(2):155-166.
Kraft R, Levine RB, Restifo LL. 1998. The steroid hormone 20-hydroxyecdysone
enhances neurite growth of Drosophila mushroom body neurons isolated
during metamorphosis. J Neurosci 18(21):8886-8899.
Lee T, Lee A, Luo L. 1999. Development of the Drosophila mushroom bodies:
sequential generation of three distinct types of neurons from a neuroblast.
Development 126(18):4065-4076.
Lee T, Marticke S, Sung C, Robinow S, Luo L. 2000. Cell-autonomous requirement
of the USP/EcR-B ecdysone receptor for mushroom body neuronal
remodeling in Drosophila. Neuron 28(3):807-818.
Malun D, Moseleit AD, Grunewald B. 2003. 20-Hydroxyecdysone inhibits the
mitotic activity of neuronal precursors in the developing mushroom bodies of
the honeybee, Apis mellifera. J Neurobiol 57(1):1-14.
McGuire SE, Le PT, Davis RL. 2001. The role of Drosophila mushroom body
signaling in olfactory memory. Science 293(5533):1330-1333.
Nail-Boucherie K, Dourmap N, Jaffard R, Costentin J. 2000. Contextual fear
conditioning is associated with an increase of acetylcholine release in the
hippocampus of rat. Brain Res Cogn Brain Res 9(2):193-197.
Pascual A, Preat T. 2001. Localization of long-term memory within the Drosophila
mushroom body. Science 294(5544):1115-1117.
Prado MA, Reis RA, Prado VF, de Mello MC, Gomez MV, de Mello FG. 2002.
Regulation of acetylcholine synthesis and storage. Neurochem Int
41(5):291-299.
Rogers JL, Kesner RP. 2004. Cholinergic modulation of the hippocampus during
encoding and retrieval of tone/shock-induced fear conditioning. Learn Mem
11(1):102-107.
Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. 2005. A role for adult
neurogenesis in spatial long-term memory. Neuroscience 130(4):843-852.
Su H, O'Dowd DK. 2003. Fast synaptic currents in Drosophila mushroom body
Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic
acetylcholine receptors and picrotoxin-sensitive GABA receptors. J Neurosci
23(27):9246-9253.
Talbot WS, Swyryd EA, Hogness DS. 1993. Drosophila tissues with different
metamorphic responses to ecdysone express different ecdysone receptor
40
isoforms. Cell 73(7):1323-1337.
Technau G, Heisenberg M. 1982. Neural reorganization during metamorphosis of the
corpora pedunculata in Drosophila melanogaster. Nature
295(5848):405-407.
Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S. 2006. Inhibition of
neurogenesis interferes with hippocampus-dependent memory function.
Hippocampus 16(3):296-304.
Yasuyama K, Meinertzhagen IA, Schurmann FW. 2002. Synaptic organization of the
mushroom body calyx in Drosophila melanogaster. J Comp Neurol
445(3):211-226.
Zars T, Fischer M, Schulz R, Heisenberg M. 2000. Localization of a short-term
memory in Drosophila. Science 288(5466):672-675.
Zhu S, Chiang AS, Lee T. 2003. Development of the Drosophila mushroom bodies:
elaboration, remodeling and spatial organization of dendrites in the calyx.
Development 130(12):2603-2610.