簡易檢索 / 詳目顯示

研究生: 黃永睿
Yuan-Ruei Huang
論文名稱: 果蠅成蟲的蕈狀體神經細胞特性
Characterization of Mushroom Body Neurons in Drosophila adults
指導教授: 江安世
Ann-Shyn Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 40
中文關鍵詞: 蕈狀體果蠅乙醯膽鹼珈瑪氨基丁酸20-羥基蛻皮激素計數方法成蟲
外文關鍵詞: mushroom bodies, Drosophila, acetylcholine, GABA, 20-hydroxyecdysone, adult, Kenyon cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 果蠅蕈狀體 (mushroom bodies) 是一成對的腦區, 各自由約2500 個
    Kenyon cells 所組成, 而依據在蕈狀體中所構成的區域, Kenyon cells 可以細分成5 種類型, 分別稱為珈瑪 (γ KCs), 阿法’/貝塔’ (α’/β’ KCs), 前趨阿法/貝塔(pioneer α/β KCs), 早期阿法/貝塔 (early α/β KCs) 以及晚期阿法/貝塔Kenyon
    cells (late α/β KCs), 然而尚未有研究指出這5 種細胞的數目.而目前已知在果蠅, 蕈狀體參與和嗅覺連結相關的學習記憶. 雖然已經證明短期記憶的提取需要Kenyon cells 向外的訊息傳遞, 但是Kenyon cells 釋放何種神經傳導物質依舊未可得知. 我們將綠色螢光蛋白 (GFP) 表現在各類型Kenyon cells 的細胞核並且結合新的計數方法, 判定Kenyon cells 共有約2700 顆, 其中有870 顆珈瑪細
    胞, 420 顆阿法’/貝塔’細胞, 90 前趨阿法/貝塔細胞, 480 早期阿法/貝塔細胞以及860 晚期阿法/貝塔Kenyon cells. 我們亦使用了遺傳調控方法, 發現大多數的Kenyon cells 使用乙醯膽鹼 (acetylcholine) 作為神經傳導物質, 一小部分的則釋放珈瑪氨基丁酸 (γ-aminobutyric acid), 而某些則會同時使用兩種神經傳導物
    質. 另外, 為了治療神經退化性疾病, 我們測試昆蟲20-羥基蛻皮激素(20-hydroxyecdysone) 是否能在果蠅成蟲增加Kenyon cells 的數量. 剛羽化的成蟲經過五天的餵食, 阿法’/貝塔’細胞數目大幅增加百分之20, 珈瑪細胞減少百分之10, 前趨阿法/貝塔和早期阿法/貝塔細胞數目則有些許的改變. 依據我們的實驗結果, 建立了一個可以有效分析細胞數目變異的研究模式, 並且提供具有發展潛力的藥物治療方法.


    Mushroom bodies (MBs) formed via sequential birth of five classes of Kenyon cells (KCs) are essential for normal olfactory learning in Drosophila adults. Without knowing the type of neurotransmitter(s) released by KCs, MB outputs have been shown to be required for the retrieval of short-term memory. Here, using genetic reporters together with a total counting method, I determine how many KCs are cholinergic and how many are GABAergic in each of the five KC classes. Using nuclear localization green fluorescent protein (nls-GFP) as a reporter, I found that a MB has about 2700 KCs composed of roughly 870 γ neurons, 420 α’/β’
    neurons, 90 pioneer α/β neurons, 480 early α/β neurons, and 860 late α/β neurons. I also found that most KCs are cholinergic while some KCs may be both cholinergic
    and GABAergic. To ameliorate brain neurodegenerative diseases, I tested if the steroid hormone 20-hydroxyecdysone (20E) has a mitogenic effect on KCs in
    Drosophila adults. After feeding 20E for 5 days, the total number of α’/β’ neurons increases nearly 20%, γ neurons decreases about 10% while the other three KC classes show slight changes. The implication of mitogenic manipulation of brain cells to ameliorate aging related memory loss and brain neurodegenerative diseases are discussed.

    Contents Acknowledgement ------------------------------------------------------------ 2 Chinese Abstract -------------------------------------------------------------- 3 English Abstract --------------------------------------------------------------- 4 Introduction -------------------------------------------------------------------- 5 Materials and Methods -------------------------------------------------------10 Results ------------------------------------------------------------------------- 14 Discussion --------------------------------------------------------------------- 19 Figures and Figure Legends -------------------------------------------------25 Reference ---------------------------------------------------------------------- 38

    Champlin DT, Truman JW. 1998. Ecdysteroid control of cell proliferation during
    optic lobe neurogenesis in the moth Manduca sexta. Development
    125(2):269-277.
    Dickinson-Anson H, Winkler J, Fisher LJ, Song HJ, Poo M, Gage FH. 2003.
    Acetylcholine-secreting cells improve age-induced memory deficits. Mol
    Ther 8(1):51-61.
    Dubnau J, Grady L, Kitamoto T, Tully T. 2001. Disruption of neurotransmission in
    Drosophila mushroom body blocks retrieval but not acquisition of memory.
    Nature 411(6836):476-480.
    Dubrovsky EB. 2005. Hormonal cross talk in insect development. Trends
    Endocrinol Metab 16(1):6-11.
    Fujiwara H, Ogai S. 2001. Ecdysteroid-induced programmed cell death and cell
    proliferation during pupal wing development of the silkworm, Bombyx mori.
    Dev Genes Evol 211(3):118-123.
    Gade G, Hoffmann KH, Spring JH. 1997. Hormonal regulation in insects: facts, gaps,
    and future directions. Physiol Rev 77(4):963-1032.
    Ganeshina O, Menzel R. 2001. GABA-immunoreactive neurons in the mushroom
    bodies of the honeybee: an electron microscopic study. J Comp Neurol
    437(3):335-349.
    Greeve I, Kretzschmar D, Tschape JA, Beyn A, Brellinger C, Schweizer M, Nitsch
    RM, Reifegerste R. 2004. Age-dependent neurodegeneration and
    Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci
    24(16):3899-3906.
    Gruntenko NE, Karpova EK, Adonyeva NV, Chentsova NA, Faddeeva NV, Alekseev
    AA, Rauschenbach IY. 2005. Juvenile hormone, 20-hydroxyecdysone and
    dopamine interaction in Drosophila virilis reproduction under normal and
    nutritional stress conditions. J Insect Physiol 51(4):417-425.
    Gu SH, Tsia WH, Chiang AS, Chow YS. 1999. Mitogenic effects of
    20-hydroxyecdysone on neurogenesis in adult mushroom bodies of the
    cockroach, Diploptera punctata. J Neurobiol 39(2):264-274.
    Heisenberg M, Heusipp M, Wanke C. 1995. Structural plasticity in the Drosophila
    brain. J Neurosci 15(3 Pt 1):1951-1960.
    Hironaka N, Tanaka K, Izaki Y, Hori K, Nomura M. 2001. Memory-related
    acetylcholine efflux from rat prefrontal cortex and hippocampus: a
    microdialysis study. Brain Res 901(1-2):143-150.
    Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D. 1997. The Drosophila
    mushroom body is a quadruple structure of clonal units each of which
    39
    contains a virtually identical set of neurones and glial cells. Development
    124(4):761-771.
    Koyama T, Iwami M, Sakurai S. 2004. Ecdysteroid control of cell cycle and cellular
    commitment in insect wing imaginal discs. Mol Cell Endocrinol
    213(2):155-166.
    Kraft R, Levine RB, Restifo LL. 1998. The steroid hormone 20-hydroxyecdysone
    enhances neurite growth of Drosophila mushroom body neurons isolated
    during metamorphosis. J Neurosci 18(21):8886-8899.
    Lee T, Lee A, Luo L. 1999. Development of the Drosophila mushroom bodies:
    sequential generation of three distinct types of neurons from a neuroblast.
    Development 126(18):4065-4076.
    Lee T, Marticke S, Sung C, Robinow S, Luo L. 2000. Cell-autonomous requirement
    of the USP/EcR-B ecdysone receptor for mushroom body neuronal
    remodeling in Drosophila. Neuron 28(3):807-818.
    Malun D, Moseleit AD, Grunewald B. 2003. 20-Hydroxyecdysone inhibits the
    mitotic activity of neuronal precursors in the developing mushroom bodies of
    the honeybee, Apis mellifera. J Neurobiol 57(1):1-14.
    McGuire SE, Le PT, Davis RL. 2001. The role of Drosophila mushroom body
    signaling in olfactory memory. Science 293(5533):1330-1333.
    Nail-Boucherie K, Dourmap N, Jaffard R, Costentin J. 2000. Contextual fear
    conditioning is associated with an increase of acetylcholine release in the
    hippocampus of rat. Brain Res Cogn Brain Res 9(2):193-197.
    Pascual A, Preat T. 2001. Localization of long-term memory within the Drosophila
    mushroom body. Science 294(5544):1115-1117.
    Prado MA, Reis RA, Prado VF, de Mello MC, Gomez MV, de Mello FG. 2002.
    Regulation of acetylcholine synthesis and storage. Neurochem Int
    41(5):291-299.
    Rogers JL, Kesner RP. 2004. Cholinergic modulation of the hippocampus during
    encoding and retrieval of tone/shock-induced fear conditioning. Learn Mem
    11(1):102-107.
    Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM. 2005. A role for adult
    neurogenesis in spatial long-term memory. Neuroscience 130(4):843-852.
    Su H, O'Dowd DK. 2003. Fast synaptic currents in Drosophila mushroom body
    Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic
    acetylcholine receptors and picrotoxin-sensitive GABA receptors. J Neurosci
    23(27):9246-9253.
    Talbot WS, Swyryd EA, Hogness DS. 1993. Drosophila tissues with different
    metamorphic responses to ecdysone express different ecdysone receptor
    40
    isoforms. Cell 73(7):1323-1337.
    Technau G, Heisenberg M. 1982. Neural reorganization during metamorphosis of the
    corpora pedunculata in Drosophila melanogaster. Nature
    295(5848):405-407.
    Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S. 2006. Inhibition of
    neurogenesis interferes with hippocampus-dependent memory function.
    Hippocampus 16(3):296-304.
    Yasuyama K, Meinertzhagen IA, Schurmann FW. 2002. Synaptic organization of the
    mushroom body calyx in Drosophila melanogaster. J Comp Neurol
    445(3):211-226.
    Zars T, Fischer M, Schulz R, Heisenberg M. 2000. Localization of a short-term
    memory in Drosophila. Science 288(5466):672-675.
    Zhu S, Chiang AS, Lee T. 2003. Development of the Drosophila mushroom bodies:
    elaboration, remodeling and spatial organization of dendrites in the calyx.
    Development 130(12):2603-2610.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE