簡易檢索 / 詳目顯示

研究生: 劉凱欣
Liu, Kai-Xin
論文名稱: 以磁控濺鍍法鍍製鐵鈷鋯氧/二氧化鋯多層軟磁薄膜及其靜磁性質與高頻特性之探討(Static and High Frequency Magnetic Properties of (FeCoZrO/ZrO2)n Soft Magnetic Thin Films Fabricated by Magnetron Sputtering)
Static and High Frequency Magnetic Properties of (FeCoZrO/ZrO2)n Soft Magnetic Thin Films Fabricated by Magnetron Sputtering
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 105
中文關鍵詞: 高頻多層膜鐵鈷鋯氧
外文關鍵詞: high-frequency, multilayer, FeCoZrO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Soft magnetic thin films with high saturation magnetization and suitable uniaxial anisotropy are of great interest in micro-inductors for the magnetic device application. The purpose of this thesis is focused on the soft magnetic multilayered film (FeCoZrO/ZrO2)n. The films were fabricated by reactive magnetron sputtering. The thickness of FeCoZrO films, the stacking levels of multilayered films and the sputtering modes of ZrO2 were altered to study how the microstructure, interface roughness and stress behavior in the as-fabricated films affected the static magnetic behavior, electrical properties, high frequency characteristics and magnetic domains.
    The resistivity of the (FeCoZrO/ZrO2)n films increased with increasing stacking levels. In addition, the effects of the residual stress and interface roughness on magnetic behavior and magnetic domains would arise when the multilayered films were deposited. Two experiments were designed to explore which factors would affect the magnetic behavior of the films. Firstly, a series of single-layered FeCoZrO (t nm)/ZrO2 (5 nm) films with various thickness t were fabricated. Secondly, the sub-layer thickness t in multilayered (FeCoZrO(t nm)/ZrO2(5 nm))n film was changed when the total film thickness was fixed. When the thickness t increased, Hc became smaller, regardless of multi-layers or single-layers. Hence, the variation of Hc was partly attributed to interface roughness. Moreover, the magnetostriction constant of FeCoZrO was measured to be 8.0E-5. Hence, the interface roughness and residual stress were critical to the magnetic behavior, Hc especially.
    The effect of the interface on the magnetic behavior was further studied. A series of FeCoZrO (70 nm)/ ZrO2 films, where the ZrO2 was prepared by different sputtering modes, were synthesized. The roughness of ZrO2 interface was altered by different sputtering modes, such as the change of substrate bias and types of power generator. The static magnetic properties, such as coercivity, squareness and uniaxial anisotropy field along hard axis, are affected by the interface roughness significantly. The magnetization reversal of FeCoZrO (70 nm)/ZrO2 is changed from coherent rotation to domain wall motion with increasing interface roughness. Moreover, ferromagnetic resonance frequency is enhanced and the real part of the complex permeability is reduced with decreasing interface roughness. These phenomena could be explained by the demagnetization energy induced by interface roughness.


    Lists of Tables III Figure Caption IV Abstract IX Chapter 1. Introduction 1 Chapter 2. Literature Survey 3 2.1 Magnetic Materials 3 2.1.1 Origin of magnetism[16] 3 2.1.2 Hysteresis loop[16] 5 2.1.3 Magnetic anisotropy[16] 7 2.1.4 Grain size dependence of Hc and μ’ 13 2.1.5 Magnetic domain[18] 16 2.2 Magnetic Thin Film Inductors 19 2.2.1 Background 19 2.2.2 Requirements of soft magnetic materials [21] 19 2.2.3 Magnetic core materials 21 2.2.4 Amorphous materials 23 2.2.5 Nanocrystalline materials[24, 25] 24 2.2.6 Energy loss in magnetic films 25 2.2.7 Micro inductors designed with a magnetic thin film 28 Chapter 3. Experimental Procedure 46 3.1 Deposition process 46 3.2 Magnetic field annealing 47 3.3 Measurement and analysis 47 3.3.1 Composition analysis 47 3.3.2 Microstructure and phase identification 47 3.3.3 Observation of surface morphology 48 3.3.4 Observation of magnetic domain 48 3.3.5 Measurement of residual stress 49 3.3.6 Measurement of magnetostriction 50 3.3.7 Measurement of resistivity and thickness 50 3.3.8 Measurement of static magnetic properties 51 3.3.9 Evaluation of permeability 52 Chapter 4. Results and Discussion 63 4.1. FeCoZrO(t nm)/ZrO2 (5 nm) 63 4.1.1 Properties of FeCoZrO(1400 nm)/ZrO2 (5 nm) 63 4.1.2 The change of Hc with thickness t in FeCoZrO(tnm)/ZrO2(5 nm) 65 4.2. (FeCoZrO(t nm)/ZrO2 (5 nm))n 68 4.3. FeCoZrO(70nm)/ZrO2 with different interface roughness 71 4.3.1 Morphology of ZrO2 with different sputtering modes 72 4.3.2 The magnetic behavior of magnetic films on ZrO2 with different roughness 73 Chapter 5. Conclusion 98 References 100

    [1] J. W. Park, J. Y. Park, Y. H. Joung, M. G. Allen, IEEE Trans.
    Compon. Packaging Technol. 25 (2002) 1061.
    [2] K. Yamaguchi, S. Ohnuma, T. Imagawa, J. Toriu, H. Matsuki, K.
    Murakami, IEEE Trans. Magn. 29 (1993) 2232.
    [3] S. Ajram, G. Salmer, IEEE Trans. Power Electron. 16 (2001)
    594.
    [4] D.B. Chrisey, P.C. Dorsey, J.D. Adams, H. Buhay, in: M.H.
    Francombe (Ed.), Handbook of Thin Film Devices, 4 (2000), 143.
    [5] S. Chikazumi, Physics of Magnetism, Wiley, New York (1964), p. 329.
    [6] H. Chen, H. K. Chen, C. T. Hsieh, Y. H. Shih, I. G. Chen, S. Y.
    Chen, and H. P. Liu, J. Appl. Phys., 91 (2002) 8450
    [7] X. L. Tang, H. W. Zhang, H. Su., and X. D. Jiang, J. Magn. Magn.
    Mater., 270 (2004) 84
    [8] N. X. Sun, and S. X. Wang, J. Appl. Phys., 92 (2002) 1477
    [9] A. R. Chezan, C. B. Craus, N. G. Chechenin, L. Niesen, and D. O.
    Boerma, Phys. Stat. Sol. (a), 189 (2002) 833
    [10] T. J. Klemmer, K. A. Ellis, L. H. Chen, B. van Dover, and S. Jin, J. Appl. Phys., 87 (2000) 830
    [11] C. H. Lee, D. H. Shin, D. H. Ahn, S. E. Nam, and H. J. Kim, J. Appl. Phys., 85 (1999) 4898
    [12] X. Y. Xiong, M. Ohnuma, T. Ohkubo, D. H. Ping, K. Hono, S.
    Ohnuma, H. Fujimori, T. Masumoto, J. Magn. Magn. Mater. 265
    (2003) 83.
    [13] S. Ohnuma, H. Fujimori, T. Masumoto, X. Y. Xiong, D. H. Ping, K. Hono, Appl. Phys. Lett. 82 (2003) 946.
    [14] L. Landau, and E. Lifshitz, Phys. Z. Sowjetunion 8 (1935) 8
    [15] W. P. Jayasekara, J. A. Bain, and M. H. Kryder, IEEE, 34
    (1998) 1438
    [16] B. D. Cullity, Introduction to Magnetic Materials, Indiana, 1972
    [17] P. Zou, W. Yu, J. A. Bain, IEEE Trans. Magn. 38 (2002) 3501.
    [18] Z. G. Sun, H. Kuramochi, M. Mizuguchi, F. Takano, Y. Semba, H. Akinaga, Surface Science 556 (2004) 33.
    [19] S. Flohrer, R. Schafer, C. Polak, G. Herzer, Acta Mater. 53 (2005) 2937.
    [20] N. Saleh, A. H. Qureshi, Electron. Lett., 6 (1970) 850
    [21] V. Korenivski, J. Magn. Magn. Mater., 215 –216 (2000) 800
    [22] Alex Van den Bossche and Vencislav Cekov Valchev, Taylor &
    Francis, ch. 3 (2005).
    [23] A. Makino, A. Inoue, and T. Masumoto, Mater. Trans. JIM, 36
    (1995) 924
    [24] Y. Yoshizawa, S. Oguma and K. Yamaguchi, J. Appl. Phys., 64
    (1988) 6044
    [25] Y. Yoshizawa, K. Yamaguchi, T. Yamane and H. Sugihara, J. Appl. Phys., 64 (1988) 6047
    [26] Michael E. McHenry*, Matthew A. Willard, David E. Laughlin,
    Progress in Materials Science, 44 (1999) 291.

    [27] Y. Hayakawa and A. Makino, nanostructured Mater. 6 (1995) 989
    [28] O. Oshiro, H. Tsujimoto, K. Shirae, IEEE Transl. J. Magn. Japan 6 (1991) 436
    [29] A. Gromov, V. Korenivski, K.V. Rao, R.B. van Dover, P.M.
    Mankiewich, IEEE Trans. Magn., 34 (1998) 1246
    [30] A. Gromov, V. Korenivski, D. Haviland, R.B. van Dover, J. Appl.
    Phys., 85 (1999) 5202
    [31] H. Suhl, IEEE Trans. Magn., 34 (1998) 1834
    [32] N.S. Almeida, D.L. Mills, Phys. Rev. B, 53 (1996) 12232
    [33] A. Sukstanskii, V. Korenivski, J. Magn. Magn. Mater., 218
    (2000) 144
    [34] R.D. McMichael, M.D. Stiles, P.J. Chen, W.F. Egelhoff Jr., J.
    Appl. Phys., 83 (1998) 7037
    [35] G. Herzer, J. Magn. Magn. Mater. 294 (2005) 99.
    [36] S. Flohrer, R. Schafer, J. McCord, S. Roth, L. Schultz, F. Fiorillo,
    W. Gunther, G. Herzer, Acta Mater 54 (2006) 4693.
    [37] S. Flohrer, R. Schafer, J. McCord, S. Roth, L. Schultz, G. Herzer,
    Acta Materialia 54 (2006) 3253.
    [38] C. H. Ahn and M. G. Allen, IEEE Trans. Ind. Electron. 45 (1998) 876
    [39] W. A. Roshem and D. E. Turcotte, IEEE Trans. Magn. 24 (1988)
    3213
    [40] W. A. Roshem, IEEE Trans. Magn. 26 (1990) 270.
    [41] M. Yamaguchi, Y. Miyazawa, K. Kaminish, and et al., J. Magn.
    Magn.Mater. 268 (2004) 170.
    [42] G. Herzer, Nanocrystalline soft magnetic alloys, in: K.H.J.
    Buschow (Ed.), Handbook of Magnetic Materials, vol. 10,
    Elsevier, Amsterdam, 1997, p. 415.
    [43] G. Herzer, The random anisotropy model, in: B. Idzikowski,
    P. Sˇ vec, M. Miglierini (Eds.), NATO Science Series II: Mathematics, Physics and Chemistry, vol. 184, Kluwer Academic, Dordrecht, 2005, p. 15.
    [44] 陳弘凱, 李四海, 杜正恭, “以RF 磁控濺鍍法鍍製多元合金
    軟磁薄膜及其磁性質與高頻特性分析”, 國立清華大學材料
    科學工程研究所碩士論文,2004.
    [45] V. Korenivski, R. B. vanDover, J. Appl. Phys. 82
    (1997) 5247.
    [46] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori,
    E.lifshin, Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press (1981)
    [47] G. G. Stoney, Proc. R. Soc. London, Ser. A. 82 (1909) 172.
    [48] C . Betz, E. du Tre’molet de Lacheisserie, and L. T. Baczewski,
    Appl. Phys. Lett. 68 (1996) 1.
    [49] E. du Tre’molet de Lacheisserie, and J. C. Peuzin, J. Magn.
    Magn.Mater. 136 (1994) 189.

    [50] M. Yamaguchi, Y. Miyazawa, K. Kaminish, H. Kikuchi, S.
    Yabukami,K. I. Arai, and T. Suzaki, J. Magn. Magn. Mater., 268
    (2004) 170
    [51] M. Yamaguchi, O. Acher, Y. Miyazawa, K. I. Arai, and M. Ledieu, J.Magn. Magn. Mater., 242 (2002) 970
    [52] Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. uverger, J. Appl.
    Phys., 85 (1999) 5151
    [53] G. Herzer, IEEE Trans. Magn. 25 (1989) 3327.
    [54] G. Herzer, IEEE Trans. Magn., 26 (1990) 1397
    [55] M. Li, G. C. Wang, H. G. Min, Journal of Applied Physics 83
    (1998) 5313.
    [56] F. M. F. Rhen, S. Roy, J. Appl.Phys. 103 (2008) 4.
    [57] Y. P. Zhao, G. Palasantzas, G. C. Wang, J. T. M. De Hosson, Phys. Rev. B 60 (1999) 1216.
    [58] Y. P. Zhao, R. M. Gamache, G. C. Wang, T. M. Lu, G. Palasantzas, J. T. M. De Hosson, J. Appl.Phys. 89 (2001) 1325.
    [59] Y. G. Ma, C. K. Ong, J J. Phys. D-Appl. Phys. 40 (2007)
    3286.
    [60] H. Clow, Nature 194 (1962) 1035.
    [61] Rointan F. Bunshah (Ed.) Handbook of Deposition Technologies
    for Films and Coatings, 2nd Ed.: Science, Applications and
    Technology, Noyes Data Corporation/Noyes Publications, Park
    Ridge, New Jersey, 1994, p. 292.
    [62] G. S. Bales, R. Bruinsma, E. A. Eklund, R. P. U. Karunasiri, J.
    Rudnick, A. Zangwill, Science 249 (1990) 264.
    [63] M. Pelliccione, T. Karabacak, C. Gaire, G. C. Wang, T. M. Lu,
    Phys. Rev. B 74 (2006) 10.
    [64] B. Reinker, M. Moske, K. Samwer, Physical Review B 56 (1997)
    9887.
    [65] W. M. Tong, R. S. Williams, Annual Review of Physical Chemistry 45 (1994) 401.
    [66] Y. T. Pei, C. Q. Chen, K. P. Shaha, J. T. M. De Flosson, J. W.
    Bradley, S. A. Voronin, M. Cada, Acta Materialia 56 (2008)
    696.
    [67] M. Li, Y. P. Zhao, G. C. Wang, H. G. Min J. Appl. Phys. 83 (1998) 6287.
    [68] G. F. Dionne, IEEE Trans. Magn. 39 (2003) 3121.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE