簡易檢索 / 詳目顯示

研究生: 張師誠
Shih-Cheng Chang
論文名稱: 應用電荷汲引技術於高介電閘極氧化層陷阱分佈與可靠度量測研究
Measurement of Interface and Border Trap Distribution and Reliability Study of High-K Gated Dielectrics MOSFETs Device by Charge Pumping Technique
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 112
中文關鍵詞: 高介電係數電晶體電荷汲引可靠度分析
外文關鍵詞: high-k, charge-pumping, reliability
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了滿足ITRS元件持續縮小化的要求,一般廣泛的認為高介電係數材料將取代原本的二氧化矽成為金氧半元件閘極介電層來改善漏電流的問題,然而在材料替換的過程中,許多問題產生,如電荷捕獲(charge trapping),臨界電壓(threshold voltage)飄移,載子遷移率(mobility)下降等,因此應用在高介電係數閘極介電層電晶體的界面陷阱(interface traps)及氧化層陷阱(oxide traps)可靠度分析因應而生。
    論文中第一部份介紹電荷汲引技術量測方法。藉由改變電荷汲引量測技術中輸入之閘極脈衝波上升/下降時間,可以計算界面陷阱在矽能隙中能量分佈。利用不同脈衝波操作頻率,我們可以得到在high-k介電層電晶體邊緣陷阱的分佈。結合上述兩者,我們可以進一步得到邊緣陷阱的能量分佈情況。
    論文最主要探討不同stress對high-k介電層產生的影響。結合電荷汲引量測技術量測經過stress之後high-k介電層電晶體界面陷阱與邊緣陷阱的變化。觀察到F-N stress造成邊緣陷阱的產生,CHC stress造成界面陷阱的產生。最後探討高溫時stress對元件的影響,期望對元件使用年限與陷阱產生及分佈的關係有進一部的了解。


    摘要.............................................................................................................I 致謝............................................................................................................II 目錄..........................................................................................................IV 圖表目錄..................................................................................................VI 第一章 序論...............................................................................................1 1.1 研究動機.........................................................................................................1 1.2 高介電係數材料選擇.....................................................................................1 1.3電荷汲引量測技術..........................................................................................2 第二章 應用電荷汲引量測技術分析High-k介電層電晶體陷阱分佈...7 2.1研究動機..........................................................................................................7 2.2 界面陷阱密度與能量分佈 (Energy distribution of interface trap density)..8 2.3邊緣陷阱密度縱深分佈的量測 (Depth Profiles of Border Trap Density).14 2.4 High-k電晶體介電層中邊緣陷阱密度與能量分布....................................17 2.5 總結...............................................................................................................20 第三章 可靠度分析:F-N Stress引致High-k介電層電晶體界面陷阱與邊緣陷阱變化...........................................................................................40 3.1研究動機........................................................................................................41 3.2 F-N stress引致界面陷阱的變化與邊緣陷阱的產生...................................42 3.3 不同偏壓引致界面陷阱變化及邊緣陷阱的產生.......................................44 3.4 F-N Stress對HfO2與HfZrO介電層電晶體的影響.......................................45 3.5 F-N stress對不同厚度HfO2介電層電晶體的影響.......................................47 3.6 總結...............................................................................................................49 第四章 可靠度分析:CHC Stress引致High-k介電層電晶體界面陷阱與邊緣陷阱變化...........................................................................................67 V 4.1研究動機........................................................................................................67 4.2 CHC stress對High-k介電層電晶體的影響..................................................68 4.3 CHC stress對HfO2與HfZrO介電層電晶體界面陷阱與邊緣陷阱的影響..70 4.4 CHC stress對不同厚度HfO2介電層電晶體界面陷阱與邊緣陷阱的影響.72 4.5 CHC stress 與 F-N stress對high-k介電層電晶體的影響...........................73 4.6 總結...............................................................................................................75 第五章 可靠度分析:BTI引致High-k介電層電晶體界面陷阱與邊緣陷阱變化.......................................................................................................95 5.1研究動機........................................................................................................96 5.2 PBT stress 下High-k電晶體基本特性的變化.............................................97 5.3 PBT stress後High-k介電層電晶體界面陷阱變化.......................................97 5.4 PBT stress後High-k介電層電晶體邊緣陷阱變化.......................................98 5.5 總結...............................................................................................................99 第六章 結論...........................................................................................107 附錄.........................................................................................................109 參考文獻.................................................................................................110

    [1] K. Torii, Y. Shimamoto, S. Saito, O. Tonomura, M. Hiratani, Y. Manabe, M. Caymax, and J. W. Maes, “The mechanism of mobility degradation in MISFETs with Al2O3 gate dielectric,” in Symp.VLSI Tech. Dig., 2002, pp. 188-189.
    [2] A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H. E. Maes and U. Schwalke, “Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics,” IEEE Electron Device Lett., vol. 24, pp. 87-89, 2003
    [3] J. P. Han, E. M. Vogel, E. P. Gusev, C. D’Emic, C. A. Richter, D. W. Heh, and J. S. Suehle, “Energy Distribution of Interface Traps in High-K Gated MOSFETs,” in Symp. VLSI Tech. Dig., 2003, pp. 161-162
    [4] J. S. Bruglar and P. G. A. Jaspers, “Charge Pumping in MOS Devices” , IEEE Transactions on Electron Devices, Vol.16, 1969, p.297
    [5] Y. Maneglia and D. Bauza, “Extraction of slow trap concentration profiles in metal-oxide-semiconductor transistors using the charge pumping method,” J. Appl. Phys., vol. 79, pp. 4187–4192, 1996.
    [6] S. Jakschik, A. Avellan, U. Schroeder, and J. W. Bartha, “Influence of Al2O3 dielectrics on the trap-depth profiles in MOS devices investigated by the charge-pumping method,” IEEE Trans. Electron Devices, vol. 51, pp.2252-2255, Dec. 2004.
    [7] G. Groeseneken, H. E. Maes, N. Bertran, and R. F. De Keersmaecker, ”A Reliable Approach to Charge-Pumping Measurements in MOS Transistors” , IEEE Transactions on Electron Devices, Vol.31, 1984, p.42
    [8] Chun-Yuan Lu, Kuei-Shu Chang-Liao, Chun-Chang Lu, Ping-Hung Tsai, and Tien-Ko Wang, “Detection of border trap density and energy distribution along the gate dielectric bulk of high-k gated MOS devices,” IEEE Electron Device Letters, vol. 28, no. 5, pp. 432-435, May 2007.
    [9] F. P. Heimann and G. Warfield, “The effect of oxide traps on MOS
    111
    capacitance,” IEEE Trans. Electron Devices, vol. ED-12, pp.167-178, 1964.
    [10] M. Giannini, A. Pacelli, A. L. Lacaita, and L. M. Perron, “Effect of oxide tunneling on the measurement of MOS interface states,” IEEE Electric Device Lett., vol. 21, pp. 405-407, Aug., 2000.
    [11] Chadwin D. Young, Dawei Heh, Suvid V. Nadkarni, Rino Choi, Jeff J. Peterson, Joel Barnett, Byoung Hun Lee, and Gennadi Bersuker, “Electron Trap Generation in High-k Gate Stacks by Constant Voltage Stress”, IEEE Device and Materail Reliability, Vol. 6, pp. 123-131, June ,2006.
    [12] Souvik Mahapatra, Dipankar Saha, Dhanoop Varghese, and P. Bharath Kumar, “On the Generation and Recovery of Interface Traps in MOSFETs Subjected to NBTI, FN, and HCI Stress”, IEEE Electric Device, Vol. 53, pp.1583-1592, July 2006.
    [13] Isodiana Crupi, Robin Degraeve, Bogdan Govoreanu, David P. Brunco,Philippe J. Roussel, and Jan Van Houdt, “Energy and Spatial Distribution of Traps in SiO2/Al2O3 nMOSFETs”, IEEE Device and Materail Reliability, Vol. 6, pp.509-516, December 2006.
    [14] Y.T. Hou, J.C. Liao, P.F. Hsu, C.L. Hung, K.C. Lin, K.T. Huang, T.L. Lee, Y.K. Fang and M.S. Liang, “BTI and Electron Trapping in Hf-based Dielectrics with Dual Metal Gates”, IEEE International Reliability Physics Symposium, pp624-625, Phoenix, 2007.
    [15] C.D. Young, D. Heha, S. Nadkami, R. Choi, J.J. Peterson, H.R. Harrisb, J.H. Sim, S.A. Krishnan, J. Barnett,E. Vogela, B.H. Leec, P. Zeitzoff, G.A. Brown, and G. Bersuker, “Detection Of Trap Generation in High-K Gate Stacks”, 2005 IIRW Final Report.
    [16] Chih-Chang Cheng, J. F. Lin, Tahui Wang, T. H. Hsieh,J. T. Tzeng, Y. C. Jong, R. S. Liou, Samuel C. Pan, , and S. L. Hsu, “Physics and Characterization of Various Hot-Carrier Degradation Modes in LDMOS by Using a Three-Region Charge-Pumping Technique” IEEE Device and Materail Reliability, Vol. 6, pp.359-363, Septemper. 2006
    [17] D. Saha, D. Varghese, and S. Mahapatra, ” On the Generation and Recovery of Hot Carrier Induced Interface Traps: A Critical Examination of the 2-D R-D Model”, IEEE Electron Devices Letter, Vol. 27, pp188-190. March, 2006.
    112
    [18] D. S. Ang and S. Wang, “Recovery of the NBTI-Stressed Ultrathin Gate p-MOSFET: The Role of Deep-Level Hole Traps”, IEEE Electron Devices Letter, Vol. 27, pp914-916. November, 2006.
    [19] M. Houssa, S. De Gendt, J.L. Autran, G. Groeseneken, and M.M. Heyns.,” Detrimental Impact of Hydrogen on Negative Bias Temperature Instabilities in Hf02-Based pMOSFETs”, IEEE VLSl Technology Digest of Technical Papers,pp.212-213, 2004.
    [20] J. F. Zhang, M. H. Chang, and G. Groeseneken, “Effects of Measurement Temperature on NBTI”, IEEE Electron Devices Letter, Vol. 28, pp298-300. April, 2007.
    [21] A. Haggag, S. Kalpat, M. Moosa, N. Liu, M. Kuffler, H.-H. Tseng, T.-Y. Luo, J. Schaeffer, D. Gilmer, S. Samavedam, R. Hegde, B.E. White Jr. and P. J. Tobin, “Generalized Models for Optimization of BTI in SiON and High-K Dielectrics”, pp.665-666 44th Annual International Reliability Physics Symposium, San Jose, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE