簡易檢索 / 詳目顯示

研究生: 李維元
LI, WEI YUAN
論文名稱: Study on preparation of 123I-fenbufen analogs.
製備碘123標幟之芬布芬衍生物之研究
指導教授: 俞鐘山
Yu, Chung-Shan
口試委員: 陳建添
汪炳鈞
瞿港華
陳炯東
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 82
中文關鍵詞: 芬布芬衍生物三甲基錫前驅物放射性標幟前驅物醯胺鍵反應
外文關鍵詞: fenbufen, gemfibrozil, iodine-123
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    兩個芬布芬類似物4-(biphenyl-4-yl)-N-octyl-4-oxobutanamide、N-(4-(4-(biphenyl-4-yl)-4-oxobutanamido)butyl)-5-(2,5-dimethylphenoxy)-2,2-dimethylpentanamide為一鍋化液相平行合成後篩選之具有癌細胞毒殺潛力藥物。因此透過其放射標幟化合物進行動物造影了解此芬布芬類似物於動物體內之分布情形與相關動力學數據。

    錫化前驅物經親電子去金屬化放射性碘標幟製備出放射標幟產物。由商品化4-iodobiphenyl經3步合成錫化前驅物N-octyl-4-oxo-
    4-(4'-(trimethylstannyl)biphenyl-4-yl)butanamide (4) 總產率36%、Gemfibrozil經4步合成錫化前驅物5-(2,5-dimethylphenoxy)-2,2-dimethyl-N-(4-(4-oxo-4-(4'-(trimethylstannyl)biphenyl-4-yl)butanamido)butyl)pentanamide (8) 總產率30%。
    錫化前驅物(4)經放射化學標幟之產物4-(4'-[123I]iodobiphenyl-4-yl)-N-octyl-4-oxobutanamide (9)放射化學產率9.5%、放射化學純度87%。


    Abstract
    The two fenbufen analogs 4-(biphenyl-4-yl)-N-octyl-4-
    oxobutanamide and N-(4-(4-(biphenyl-4-yl)-4-oxobutanamido)butyl)-5-(2,5-dimethylphenoxy)-2,2-dimethylpentanamide which, were discovered through our combinatorial approach, showed substantial cellular cytotoxicity against cancer cell lines. Thus, we are interested in radiolabeling of these molecules for obtaining the in vivo imaging and the relevant kinetic data. Radioiodinated compounds were prepared through the radioiodination of the required organostannyl precursors.

    The first tin precursor N-octyl-4-oxo-4-(4'-(trimethylstannyl)-biphenyl-4-yl)butanamide (4) was prepared from commercial 4-iodobiphenyl via three steps in a total yield of 36%. And second tin precursor 5-(2,5-dimethylphenoxy)-2,2-dimethyl-N-(4-(4-oxo-4-(4'-
    (trimethylstannyl)biphenyl-4-yl)butanamido)butyl)pentanamide (8) was prepared from commercial Gemfibrozil via four steps in a total yield of 30%.

    Radioiodination of the first tin precursor (4) to 4-(4'-[123I]iodo-biphenyl-4-yl)-N-octyl-4-oxobutanamide (9) was accomplished in a radiochemistry yield of 9.5% and radiochemistry purity of 87%.

    目錄 第一章 緒論 1 1.1平行式合成化合物與即時細胞活性篩選 1 1.2 舊藥修飾以開發新的抗癌潛力分子 3 1.2.1例一:具抗發炎特性之芬布芬 4 1.2.2例二:降血脂藥物之新用  6 1.3放射性分子造影 8 1.3.1造影目標與生物標記 10 1.3.2專一性造影分子 11 1.3.3顯影方式比較 12 第二章 研究目的 14 第三章 結果與討論 16 3.1化合物(10)逆合成分析:失敗途徑 16 3.1.1路徑一:主架構完成後再進行碘化 18 3.1.2路徑二:改變碘化時機 21 3.2化合物(10)逆合成分析:成功途徑 23 3.2.1 路徑三 24 3.3 非碘化副產物由來 25 3.4碘錫交換反應之最佳化 28 3.5化合物(5)、(6)製備之注意事項 30 3.6 放射化學標幟之最佳化 33 第四章 結論 37 第五章 實驗步驟 38 5.1 實驗方法、材料、與儀器 38 5.2 合成步驟 39 5.3 放射性碘123標幟 58 附錄 62 參考文獻 77

    參考文獻

    1. Terrett, N. K.; Combinatorial chemistry, Oxford
    University Press, 1998.
    2. Brik, A. Wu, C. Y. Wong, C. H.; Microtiter plate based
    chemistry and in situ screening: a useful approach for
    rapid inhibitor discovery. Org. Biomol. Chem., 2006, 4,
    1446–1457.
    3. Boger, D. L. Desharnais, J. Capps, K.; Solution-phase
    combinatorial libraries: modulating cellular signaling
    by targeting protein–protein or protein–DNA
    interactions. Angew. Chem., Int. Ed., 2003, 42, 4138 –
    4176.
    4. 蘇元孝 簡便的合成4-疊氮-1-丁基胺並用以建構篩選芬布芬
    及利尿酸之分子庫; 國立清華大學碩士論文 2009.
    5. Su, Y. H. Chiang, L. W. Jeng, K. C. Huang, H. L. Chen,
    J. T. Lin, W. J. Huang, C. W. Yu. C. S.; Solution-phase
    parallel synthesis and screening of anti-tumor
    activities from fenbufen and ethacrynic acid libraries.
    Bioorg. Med. Chem. Lett., 2011, 21, 1320-1324.
    6. Lin, K. I. Yang, C. H. Huang, C. W. Jian, J. Y. Huang,
    Y. C. Yu, C. S.; Synthesis and structure-activity
    relationships of fenbufen amide analogs. Molecules,
    2010, 15, 8796-8803.
    7. Mucke, H. A. M.; Drug repositioning: extracting added
    value from prior R&D investments. Cambridge Healthtech
    Institute, 2010.
    8. Aronson, J. K.; Old drugs – new uses. Br. J. Clin.
    Pharmacol., 2007, 64:5, 563–565.
    9. Kwack, M. H. Kang, B. M. Kim, M. K. Kim, J. C. Sung, Y.
    K.; Minoxidil activates β-catenin pathway in human
    dermal papilla cells: A possible explanation for its
    anagen prolongation effect. J. Dermatol. Sci., 2011, 62,
    154-159.
    10.Ashburn, T. T. Thor, K. B.; Drug repositioning :
    identifying and developing new uses for existing drugs.
    Nat. Rev. Drug Discovery, 2004, 3, 673-683.
    11.Brunton, L. L. Lazo, J. S. Parker, K. L.; Goodman &
    Gilman’s The pharmacological basis of therapeutics,
    eleventh edition. McGraw-Hill Professional, 2006.
    12.Piazza, G. A. Keeton, A. B. Tinsley, H. N. Whitt, J. D.
    Gary, B. D. Mathew, B. Singh, R. Grizzle, W. E.
    Reynolds, R. C.; NSAIDs: Old drugs reveal new anticancer
    targets. Pharmaceuticals, 2010, 3, 1652-1667.
    13.Killen, J. P.; The coxids, selective inhibitors of
    cyclooxygenase-2. N. Engl. J. Med., 2001, 345, 1708.
    14.Wanner, C. Wieland, H. Schollmeyer, P. Horl, W. H.;
    Beclobrate: pharmacodynamic properties and therapeutic
    use in hyperlipidemia. Eur. J. Clin. Pharmacol., 1991,
    40, S85-S89.
    15.Valasek, M. K. Clarke, S. L. Repa1, J. J.; Fenofibrate
    reduces intestinal cholesterol absorption via PPARα-
    dependent modulation of NPC1L1 expression in mouse. J.
    Lipid Res., 2007, 48, 2725-2735.
    16.Kersten, S. Desvergne, B. Wahli, W.; Roles of PPARs in
    health and disease. Nature, 2000, 405, 421-424.
    17.Rader, D. J. Cohen, J. Hobbs, H. H.; Monogenic
    hypercholesterolemia: new insights in pathogenesis and
    treatment. J. Clin. Invest., 2003, 111, 1795-1803.
    18.Rader, D. J.; Effects of nonstatin lipid drug therapy on
    high-density lipoprotein metabolism. Am. J. Cardiol.,
    2003, 9, 18E-23E.
    19.Davies, A. G.; Organotin chemistry, Second Edition.
    WILEY-VCH Verlag GmbH & Co. KGaA, 2004.
    20.Davies, A. G.; Metals as surrogates for hydrogen in
    organic chemistry: anything hydrogen can do, a metal can
    do better. J. Chem. Soc., Perkin Trans., 2000, 1, 1997-
    2010.
    21.Kitching, W. Olszowy, H. A. Harvey, K.; Further studies
    of substitution reactions of stannyl and germy1
    anionoids with alkyl bromides. rearrangement of the 6-
    hepten-2-yl moiety. J. Org. Chem., 1982, 47, 1893-1904.
    22.Rudin, M.; Molecular imaging basic principles and
    applications in biomedical research. Imperial College
    Press, 2005.
    23.Rudin, M. Beckmann, N. Porszasz, R. Reese, T. Bochelen,
    D. Sauter, A.; In vivo magnetic resonance methods in
    pharmaceutical research: current status and
    perspectives. NMR Biomed., 1999, 12, 69-97.
    24.Weissleder, R.; Scaling down imaging : molecular mapping
    of cancer in mice. Nat. Rev. Cancer, 2002, 2, 1-8.
    25.Michnick, S. T.; Exploring protein interactions by
    interaction-induced folding of proteins from
    complementary peptide fragments. Curr. Opin. Struct.
    Biol., 2001, 11, 472-477.
    26.Coenen, H. H. Mertens, J. Maziere, B.; Radioionidation
    reactions for radiopharmaceuticals. Springer, 2006.
    27.Fuchigami, T. Yamaguchi, H. Ogawa, M. Biao, L. Nakayama,
    M. Haratake, M. Magata, Y.; Synthesis and biological
    evaluation of radio-iodinated benzimidazoles as SPECT
    imaging agents for NR2B subtype of NMDA receptor.
    Bioorg. Med. Chem., 2010, 18, 7497–7506.
    28.Babich, J. W. Zimmerman, C. Maresca, K. P.; Process for
    production of heterodimers of glutamic acid cross-
    reference to related application. International
    Publication Number:WO 2010/147965 A2.
    29.Vaidyanathan, G. Affleck, D. J. Alston, K. L. Zalutsky,
    M. R.; A tin precursor for the synthesis of no-carrier-
    added [*I]MIBG and [211At]MABG. J. Labelled Compd.
    Radiopharm., 2007, 50, 177–182.
    30.Pandey, S. K. Sajjad, M. Chen, Y. Zheng, X. Yao, R.
    Missert, J. R. Batt, C. Nabi, H. A. Oseroff, A. R.
    Pandey, R. K.; Comparative positron-emission tomography
    (PET) imaging and phototherapeutic potential of 124I-
    Labeled methyl-3-(1′-iodobenzyloxyethyl)
    pyropheophorbide-a vs the corresponding glucose and
    galactose conjugates. J. Med. Chem., 2009, 52, 445–455.
    31.Watanabe, H. Ono, M. Haratake, M. Kobashi, N. Saji, H.
    Nakayama, M.; Synthesis and characterization of novel
    phenylindoles as potential probes for imaging of β-
    amyloid plaques in the brain. Bioorg. Med. Chem., 2010,
    18, 4740-4746.
    32.Lin, K. I. Chianga, L. W. Wua, C. H. Chena, S. W. Yua,
    C. S.; Synthesis of 5-radioiodoarabinosyl uridine analog
    for probing the HSV-1 thymidine kinase gene. J. Chin.
    Chem. Soc., 2007, 54, 563-568.
    33.Konig, M. Reith, L. M. Monkowius, U. Knor, G.
    Bretterbauer, K. Schoefberger, W.; Suzukie-Miyaura cross-
    coupling reaction on copper-trans-A2B corroles with
    excellent functional group tolerance. Tetrahedron, 2011,
    67, 4243-4252.
    34.Sierra, D. Zuniga, C. Buono-Core, G. E. Godoy, F. Klahn,
    A. H.; Suzuki cross-coupling of aryl bromides catalyzed
    by cyrhetrenylphosphine complexes of palladium (II).
    Inorg. Chem. Commun., 2011, 14, 961-963.
    35.Li, J. J.; Name reactions a collection of detailed
    reaction mechanisms. Springer, 2003.
    36.Srinivas, C. Haricharan Raju, C. M. Acharyulu, P. V. R.;
    A simple procedure for the isolation of γ-
    oxobenzenebutanoic acid derivatives: application to the
    synthesis of fenbufen. Org. Process Res. Dev., 2004, 8,
    291-292.
    37.Valeur, E. Bradley, K.; Amide bond formation: beyond the
    myth of coupling reagents. Chem. Soc. Rev., 2009, 38,
    606-631.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE