簡易檢索 / 詳目顯示

研究生: 施楷廷
Shr, Kai-Ting
論文名稱: 編碼輔助式訊雜比估測與其在無線通訊系統的應用
Code-Aided SNR Estimation and Its Applications to Wireless Communication Systems
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員: 闕志達
Chiueh, Tzi-Dar
趙啟超
Chao, Chi-Chao
張錫嘉
Chang, Hsie-Chia
許騰尹
Hsu, Terng-Yin
黃穎聰
Hwang, Yin-Tsung
翁詠祿
Ueng. Yeong-Luh
黃元豪
Huang, Yuan-Hao
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 100
中文關鍵詞: 訊雜比無線晶格編碼編碼輔助式資料輔助式耗能感知時空晶格編碼多輸入多輸出維特比狀態化簡定位定位接收訊號強度消除粒子凹谷最佳化子梯度全球互通微波存取長期演進技術
外文關鍵詞: SNR, Wireless, Trellis-Coded, Code-Aided, Data-Aided, Power-Aware, STTC, MIMO, Viterbi, State-Purging, Positioning, Localization, RSS, Cancellation, Particle, Convex, Optimization, Sub-Gradient, WiMAX, LTE
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線通訊系統中,訊雜比估測是相當重要的技術。許多系統應用都需要訊雜比的資訊,來達到系統效能的最佳化。本論文提出了一套適用於晶格編碼系統的創新編碼輔助式訊雜比估測法。本估測法利用平均接收訊號能量,以及從維特比解碼程序中得到的最短路徑長度,來估測訊雜比。模擬結果顯示,相較於其他過去文獻提出的無資料輔助式訊雜比估測法,特別是在低訊雜比的環境下,本估測法能達到較佳的效能。此外,天線多工亦能增進本估測法的效能。
    在本論文中,我們利用本估測法,使兩種無線通訊系統內的應用達到效能的最佳化。第一種應用,是耗能感知性時空晶格編碼多輸入多輸出檢測器。我們提出一套以T理論為基礎的狀態化簡機制,降低分支長度運算的高複雜度。內嵌的訊雜比估測器提供了必要的訊雜比資訊,作為決定在狀態化簡機制中,最佳化簡下限的依據。接著,本機制動態地降低運算複雜度,並保持編碼增益減損低於0.1dB。我們採用了TSMC 1P9M CMOS技術來實現本檢測器(4對4天線維度)。當晶片時脈為83.33MHz時,功率消耗為7.94mW至8.70mW(QPSK調變)、10.02mW至10.95mW(8PSK調變)、以及12.20mW至13.10mW(16QAM調變)。當訊雜比為20dB時,可達最高耗能降低幅度為13.45%至17.62%。
    另一種應用,是以接收訊號強度為基礎的高精準度移動式定位系統。各個基地台利用接收訊號強度資訊估算訊號傳送距離,接著系統利用各個估算距離進行移動裝置的定位。本論文提出的估測法,能夠將接收訊號強度中的雜訊能量消除;比起其他文獻提出的無資料輔助式訊雜比估測法,本估測法能較為精準地消除雜訊能量。各基地台的粒子濾波器,利用已消除雜訊能量的接收訊號強度,進行距離估測。我們將估測距離與各基地台位置等資訊,整理成一個凹谷最佳化問題。最後,本系統實作了子梯度法解出本問題的最佳解,得到定位結果。模擬結果顯示,當訊雜比為0dB時,比起利用未消除雜訊能量的接收訊號強度進行定位運算,本估測法能將定位誤差降至1%。因此,利用了本估測法的接收訊號強度估測器,能增進整體定位系統的精確度。當移動式裝置的速率為60km/hr時,本系統的定位誤差為30m(SUI-1通道)、以及40m(SUI-3與SUI-5通道)。


    The signal-to-noise (SNR) estimation is an essential technique in wireless communication systems, and many applications require the SNR as the prior information to optimize the system performance. This thesis presents a novel code-aided (CA) SNR estimation method for the trellis-coded systems. The proposed method estimates the SNR using the average symbol energy and the minimum path metric from the Viterbi decoding procedure. The simulation results indicate that the proposed method has better estimation performance than the other non-data-aided (NDA) SNR estimation methods in the literature, especially in low
    SNR conditions. Besides, the antenna diversity improves the estimation performance of the proposed method.
    In this thesis, we optimize the performance of two applications in wireless communication systems by using the proposed method. The first application is the power-aware space-time trellis code (STTC) multiple-input multiple-output (MIMO) detector. We presents a state-purging mechanism based on the T-algorithm to reduce the high complexity of branch metric calculations. The embedded SNR estimator using the proposed method provides the essential
    SNR information to determine the optimal threshold for the state-purging mechanism. Then, the mechanism dynamically decreases computational complexity and only degrades coding
    gains by less than 0.1dB. The power-aware STTC 4 times 4 MIMO detector is fabricated using 90nm 1P9M CMOS technology, and the power consumption with the clock rate of 83.33MHz is 7.94mW to 8.70mW for the QPSK modulation, 10.02mW to 10.95mW for the 8PSK modulation and 12.20mW to 13.10mW for the 16QAM modulation. The maximum power saving ranges from 13.45% to 17.62% when the SNR is 20dB.
    The other application is the high-accuracy RSS-based mobile positioning system. Each base station estimates the distance based on the RSS information, and the system collect all the estimated distances to locate the mobile station. The proposed method cancels the noise energy from the raw RSS and has better improvement on noise cancellation than the other NDA SNR estimation methods. The particle filter of each base station determines the distance based on the estimated RSS. We formulate the convex optimization problem based on the estimated distances and the positions of base stations. Finally, the system implements the sub-gradient method to solve the problem and locates the mobile station. Simulation results
    depict that the proposed method decreases the errors of the raw RSS estimation to 1% when the SNR is 0dB. The RSS estimator using the proposed method derives the RSS with noise cancellation and improves the localization performance of the positioning system. When the mobile station moves at the speed of 60km/hr, the localization errors of the proposed system are 30m in the SUI-1 channel and 40m in the SUI-3 and SUI-5 channels.

    1 Introduction ......................................... 1 2 Proposed Code-Aided SNR Estimation ................... 7 2.1 Transmission Signal ................................ 7 2.1.1 64-state CC and Modulation ....................... 7 2.1.2 16-state STTC and Modulation ..................... 8 2.2 Channel Model ...................................... 8 2.3 Introduction of Proposed Estimation Method ......... 10 2.3.1 SISO System ...................................... 10 2.3.2 MIMO System ...................................... 12 3 Simulation Results and Discussion .................... 15 3.1 Cramer-Rao Lower Bound of SNR Estimation ........... 15 3.2 Simulation Results ................................. 17 4 Application I: Power-Aware STTC MIMO Detector ........ 25 4.1 STTC MIMO System ................................... 25 4.2 Power-Aware Technique .............................. 27 4.2.1 CA SNR Estimation ................................ 27 4.2.2 State-Purging Mechanism .......................... 29 4.2.3 Simulations for Proposed Mechanism ............... 30 4.3 Architecture of STTC MIMO Detector ................. 30 4.3.1 Branch Metric Unit ............................... 33 4.3.2 Path Metric Unit ................................. 34 4.3.3 Traceback Unit ................................... 38 4.3.4 Design of Timing Schedule ........................ 39 4.3.5 Fixed-Point Simulations .......................... 41 4.3.6 Functionality Verification Platform ............... 42 4.4 Chip Implementation and Measurement Results ........ 44 5 Application II: Mobile Positioning System ............ 49 5.1 Transmission Signal ................................ 49 5.2 Channel Model ...................................... 50 5.3 RSS Estimation with Noise Cancellation ............. 52 5.3.1 SISO System ...................................... 52 5.3.2 MIMO System ...................................... 56 5.3.3 Cramer-Rao Lower Bound for RSS Estimation ........ 57 5.3.4 RSS Estimation Performance ....................... 59 5.4 Mobile Positioning System .......................... 65 5.5 Simulations and Analysis ........................... 69 5.5.1 Development Environment .......................... 69 5.5.2 Simulation Results and Discussion ................ 69 5.6 Real-World Implementation .......................... 77 6 Conclusion and Future Work ........................... 81 6.1 Conclusion ......................................... 81 6.2 Future Work ........................................ 83 Appendix ............................................... 90 A Lookup Tables of Modulation Mapping .................. 91 B Generator Coefficients for 16-State STTC ............. 93 C Parameters of SUI Multipath Rician Channels for WiMAX 97

    [1] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing. Wiley-Interscience, 1997.
    [2] D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR estimation techniques for the AWGN channel," IEEE Trans. Commun., vol. 48, no. 10, pp. 1681-1691, Oct. 2000.
    [3] N. C. Beaulieu, A. S. Toms, and D. R. Pauluzzi, "Comparison of four SNR estimators for QPSK modulations," IEEE Commun. Lett., vol. 4, no. 2, pp. 43-45, Feb. 2000.
    [4] B. Li, R. DiFazio, and A. Zeira, "A low bias algorithm to estimate negative SNRs in an AWGN channel," IEEE Commun. Lett., vol. 6, no. 11, pp. 469-471, Nov. 2002.
    [5] A. Wiesel, J. Goldberg, and H. Messer, "Non-data-aided signal-to-noise-ratio estimation," in Proc. IEEE ICC, vol. 1, New York, Apr. 2002, pp. 197-201.
    [6] M. A. Boujelben, F. Bellili, S. Affes, and A. Stephenne, "EM algorithm for non-data-aided SNR estimation of linearly-modulated signals over SIMO channels," in Proc. IEEE GLOBECOM, Dec. 2009, pp. 1-6.
    [7] H. Xu, Z. Li, and H. Zheng, "A non-data-aided SNR estimation algorithm for QAM signals," in Proc. IEEE ICCCAS, vol. 1, Jun. 2004, pp. 103-107.
    [8] H. Xu and H. Zheng, "The maximum-likelihood SNR estimation algorithm for QAM signals," in Proc. IEEE ICOSP, vol. 3, Nov. 2006.
    [9] W. Gappmair, R. Lopez-Valcarce, and C. Mosquera, "ML and EM algorithm for non-data-aided SNR estimation of linearly modulated signals," in Proc. IEEE CNSDSP, Jul. 2008, pp. 530-534.
    [10] F.-X. Socheleau, A. Aissa-El-Bey, and S. Houcke, "Non data-aided SNR estimation of OFDM signals," IEEE Commun. Lett., vol. 12, no. 11, pp. 813-815, Nov. 2008.
    [11] S. Im and E. J. Powers, "An algorithm for estimating signal-to-noise ratio of UWB signals," IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1905-1908, Sep. 2005.
    [12] Y. Chen and N. C. Beaulieu, "SNR estimation methods for UWB systems," IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3836-3845, Oct. 2007.
    [13] M. A. Dangl and J. Lindner, "How to use a priori information of data symbols for SNR estimation," IEEE Signal Process. Lett., vol. 13, no. 11, pp. 661-664, Nov. 2006.
    [14] N. Wu, H. Wang, and J.-M. Kuang, "Code-aided SNR estimation based on expectation maximisation algorithm," Electronics Letters, vol. 44, no. 15, pp. 924-925, Jul. 2008.
    [15] N. Wu, H. Wang, and J.-M. Kuang, "Maximum likelihood signal-to-noise ratio estimation for coded linearly modulated signals," IET Communications, vol. 4, no. 3, pp. 265-271, Feb. 2010.
    [16] Information Technology-Telecommunications and Information Exchange between Systems-local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 4: Enhancements for Higher Throughput, IEEE Unapproved Draft Standard 802.11n, Rev. 4.00, 2008.
    [17] Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Standard 802.16, 2006.
    [18] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
    coding, IEEE Standard 3GPP TS 36.212, Rev. 8, 2007.
    [19] A. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260-269, Apr. 1967.
    [20] G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, "Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture," Electronics Letters, vol. 35, no. 1, pp. 14-16, Jan. 1999.
    [21] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: performance criterion and code construction," IEEE Trans.
    Inf. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
    [22] K.-T. Shr, H.-D. Chen, and Y.-H. Huang, "A Low-Complexity Viterbi decoder for space-time trellis codes," IEEE Trans. Circuits Syst. I, vol. 57, no. 4, pp. 873-885, Apr. 2010.
    [23] S. J. Simmons, "Breadth-first trellis decoding with adaptive effort," IEEE Trans. Commun., vol. 38, no. 1, pp. 3-12, Jan. 1990.
    [24] P. A. Bengough and S. J. Simmons, "Sorting-based VLSI architectures for the M-algorithm and T-algorithm trellis decoders," IEEE Trans. Commun., vol. 43, no. 234, pp. 514-522, Apr. 1995.
    [25] Fei Sun and Tong Zhang, "Parallel high-throughput limited search trellis decoder VLSI design," IEEE Trans. VLSI Syst., vol. 13, no. 9, pp. 1013-1022, Sep. 2005.
    [26] Fei Sun and Tong Zhang, "Low-power state-parallel relaxed adaptive Viterbi decoder," IEEE Trans. Circuits
    Syst. I, vol. 54, no. 5, pp. 1060-1068, May 2007.
    [27] J. He, Z. Wang, and H. Liu, "An efficient 4-D 8PSK TCM decoder architecture," IEEE Trans. VLSI Syst., vol. 18, no. 5, pp. 808-817, May 2010.
    [28] T. H. Kerr, "A critical perspective on some aspects of GPS development and use," in Proc. AIAA/IEEE DASC, vol. 2, Oct. 1997, pp. 9.4-9-9.4-20 vol.2.
    [29] F. GOV., "Wireless 911 services," Consumer & Governmental Affairs Bureau, 2010.
    [30] J. J. Caffery and G. L. Stuber, "Overview of radiolocation in CDMA cellular systems," IEEE Commun. Mag., vol. 36, no. 4, pp. 38-45, Apr. 1998.
    [31] I. Jami, M. Ali, and R. F. Ormondroyd, "Comparison of methods of locating and tracking cellular mobiles," in Proc. IEE Colloquium on Novel Methods of Location and Tracking of Cellular Mobiles and Their System Applications, 1999, pp. 1/1-1/6.
    [32] B. Ristic, S. Arulampalm, and N. Gordon, Beyond the Kalman filter: particle filters for tracking applications. Artech House, 2004.
    [33] L. Doherty, K. K.S.J. pister, and L. E. Ghaoui, "Convex position estimation in wireless sensor networks," in Proc. IEEE INFOCOM, vol. 3, no. 3, 2001, pp. 1655-1663.
    [34] W.-Y. Chiu and B.-S. Chen, "Mobile location estimation in urban areas using mixed Manhattan/Euclidean norm and convex optimization," IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 414-423, Jan. 2009.
    [35] N. Z. Shor, Minimization Methods for Non-Differentiable Functions. Springer-Verlag, Mar. 1985.
    [36] P. Frenger, P. Orten, and T. Ottosson, "Convolutional codes with optimum distance spectrum," IEEE Commun. Lett., vol. 3, no. 11, pp. 317-319, Nov. 1999.
    [37] C. M. Thomas, "Maximum likelihood estimation of signal-to-noise ratio," Ph.D. dissertation, Univ. of Southern California, Los Angeles, 1967.
    [38] H. L. V. Trees, Detection, Estimation, and Modulation Theory. New York: Wiley, 1968.
    [39] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ: Prentice Hall, 1993.
    [40] M. Kamuf, V. Owall, and J. Anderson, "Optimization and implementation of a Viterbi decoder under flexibility constraints," IEEE Trans. Circuits Syst. I, vol. 55, no. 8, pp. 2411-2422, Sep. 2008.
    [41] M. Anders, S. Mathew, S. Hsu, R. Krishnamurthy, and S. Borkar, "A 1.9Gb/s 358mW 16-256 state reconfigurable Viterbi accelerator in 90nm CMOS," IEEE J. Solid-State
    Circuits, vol. 43, no. 1, pp. 214-222, Jan. 2008.
    [42] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, and R. Bianchi, "An empirically based path loss model for wireless channels in suburban environments," IEEE J. Sel. Areas Commun., vol. 17, no. 7, pp. 1205-1211, Jul. 1999.
    [43] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Prentice Hall, 2002.
    [44] T.-D. Chiueh and P.-Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications. Wiley, 2007.
    [45] V. Erceg, K. V. S. Hari, M. S. Smith, and D. S. B. et al, "Channel Models for Fixed Wireless Applications," IEEE 802.16.3 Task Group Contributions 2001, Feb. 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE