簡易檢索 / 詳目顯示

研究生: 湯博凱
Tang, Po-Kai
論文名稱: CMOS微電容式超音波感測器
CMOS Micromachined Capacitive Ultrasonic Sensors
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: CMOSCMUT電容式超音波傳感器
外文關鍵詞: CMOS, CMUT, Capacitive, Ultrasound, Transducer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項研究提出了一種可用於水中的超音波感測的CMOS微電容式傳感器。通過使用CMOSMEMS的技術,是可以將感測器與感測電路整合的。藉由CMOS製程,可有效降低電路的寄生電容,以提高信號的信噪比。藉由在感測薄膜下方放置感測電路,可以方便我們在製作大型的二維感測陣列的訊號拉線。
    感測薄膜結構的釋放是藉由post-CMOS製程進行金屬蝕刻,而密封則是透過2微米的二氧化矽或是聚對二甲苯作為密封材料。單一的感測結構是由一直徑 60 微米的圓盤所構成,並形成一個34.8 fF的感測電容。而一個完整的感測器元件是由9個薄膜並聯,其總電容值為312.2 fF。
    感測薄膜結構的釋放是藉由post-CMOS製程進行金屬蝕刻,而密封則是透過2微米的二氧化矽或是聚對二甲苯作為密封材料。此微結構是由直徑 60 微米的圓盤所構成,並形成一個34.8 fF的感測電容。一個完整的感測器元件是由9個薄膜並聯,其總電容值為312.2 fF。
    在此我們施加一交流偏壓於感測薄膜的藉以穩定感測信號,否則由於介電質薄膜中的缺陷將捕捉電極間的電荷,造成感測信號隨著時間而減弱。通過這種交流偏壓量測法,在感測器和超音波發射器距離14毫米下,測得的訊號大小分別為456.1和683.5 mVpp。感測器在水中的共振頻率分別為8.8和6兆赫。


    This work presents the CMOS micromachined capacitive sensors for ultrasound detection in water. By using the CMOSMEMS technology, the sensor combined integrated circuit is possible. The CMOS fabrication can effectively reduce the parasitic capacitance to enhance the signal to noise ratio. Convenient routing, which is desired for making large two-dimensional arrays, is achieved by placing the detection circuits beneath sensing membranes.
    The sensing membranes are released by a post-CMOS metal etch and sealed by using either 2 um silicon dioxide or parylene-D . The microstructure has a suspended plate of 60 um in diameter that produces a sensing capacitance of 34.8 fF. The single detection element is formed by nine membranes with a total capacitance value of 312.2 fF.
    An alternating voltage bias is applied to the membranes for stabilizing the sensed signals which would otherwise attenuate over time due to trapped charges between electrodes. By this method, measured signal is 456.1 and 683.5 mVpp with 14 mm between the sensor and the ultrasonic sound emitter. Resonant frequencies of the sensors in water are 8.8 and 6 MHz, respectively.

    目錄 第一章 序論 1 1-1 前言 1 1-2 微機電系統概述 2 1-3 相關研究發展 4 1-4 研究動機 6 第二章 超音波感測器之設計、分析與模擬 9 2-1 CMUT架構簡介 9 2-2 平行版電容相關理論 10 2.2.1 機電轉換模型 10 2.2.2 薄膜崩潰電壓 11 2-3 超音波感測器設計與模擬 14 2.3.1 感測器結構設計與模擬 17 2.3.2 電路設計與模擬 19 2-4 後製程 22 第三章 後製程及量測結果 24 3-1 後製程之結果 24 3-2 感測電路量測 25 3.2.1 空氣中超音波訊號量測 26 3.2.2 水中測試環境 30 3.2.3 水中超音波訊號量測 32 第四章 改善與分析 35 4-1 結構改善及其超音波訊號量測 38 4-2 交流式偏壓超音波訊號量測 40 4.2.1 水中超音波訊號量測(parylene封裝) 42 4.2.2 水中超音波訊號量測(oxide封裝) 48 第五章 結論與未來工作 55 5-1 量測結果分析 55 5-2 結果討論 56 5-3 未來工作 60 參考文獻 62

    [1] G. S. Kino, Acoustic Waves: Devices, Imaging, & Analog Signal Processing. (Prentice-Hall, Englewood Cliffs, N.J., 1987).
    [2] X. C. Jin, I. Ladabaum, and B. T. Khuri-Yakub. “The microfabrication of capacitive ultrasonic transducers.” 9th Int. Conf. Solid-State Sensors and Actuators (Transducers '97) Chicago, IL, USA, Tech. Digest vol. 1 (1997), pp. 437–440.
    [3] X. Jin, O. Oralkan, F. L. Degertekin, and B. T.Khuri-Yakub, “Characterization of One-Dimensional Capacitive Micromachined Ultrasonic Immersion Transducer Arrays,” IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 48, No. 3, May, 2001.
    [4] A. Ballato, “Piezoelectricity: old effect, new thrusts,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 42, pp. 916-926, 1995.
    [5] E. Fukada, "History and recent progress in piezoelectric polymers," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, pp. 1277-1290, 2000.
    [6] C. G. Oakley and M. J. Zipparo, "Single crystal piezoelectrics: a revolutionary development for transducers," Proceedings of the IEEE Ultrasonics Symposium , vol.2, pp. 1157–1167, 2000.
    [7] D. Hohm and G. Hess, "A subminiature condenser microphone with silicon-nitride membrane and silicon back plate," Journal of the Acoustical Society of America, vol. 85, pp. 476-480, Jan 1989.
    [8] K. Suzuki, K. Higuchi, and H. Tanigawa, "A silicon electrostatic ultrasonic transducer," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 36, pp. 620-627, 1989.
    [9] M. Rafiq and C. Wykes, "The performance of capacitive ultrasonic transducers using v-grooved backplates," Measurement Science & Technology, vol. 2, pp. 168-174, Feb 1991.
    [10] M. I. Haller and B. T. Khuri-Yakub, "A surface micromachined electrostatic ultrasonic air transducer," Proceedings of IEEE Ultrasonics Symposium, vol.2, pp. 1241-1244, 1994.
    [11] P. C. Eccardt, K. Niederer, and B. Fischer, "Micromachined transducers for ultrasound applications," Proceedings of IEEE Ultrasonics Symposium, vol.2, pp. 1609-1618 1997.
    [12]B. T. Khuri-Yakub, C. H. Cheng, F. L. Degertekin, S. Ergun, S. Hansen, X. C. Jin, and O. Oralkan, "Silicon micromachined ultrasonic transducers," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 39, pp. 2883-2887, May 2000.
    [13] I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, B.T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers.” Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 45, no. 3, pp. 678-690, 1998.
    [14]Y. L. Huang, E. Haeggstrom, B. Bayram, X. F. Zhuang, A. S. Ergun, C.H. Cheng, B. T. Khuri-Yakub, "Comparison of conventional and collapsed region operation of capacitive micromachined ultrasonic transducers," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, no. 10, pp. 1918- 1932, Oct. 2006.O. Oralkan,
    [15]Cheng X, Chen J, Shen I-M, Li P-C and Wang M 2007 Fabrication and assembly of a monolithic 3D CMUT array for imaging applications Proc. IEEE Ultrason. Symp. pp 515–8.
    [16]A. S. Ergun, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B.T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers: fabrication technology," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 52, no. 12, pp. 2242- 2258, Dec. 2005.
    [17] X. Zhuang, A. Nikoozadeh, M. A. Beasley, G. G. Yarahoglu, B. T. Khuri-Yakub and B. L. Pruitt, "Biocompatible coatings for CMUTs in a harsh, aqueous environment," Jounal of Micromechanics and Microengineering, vol.17, pp. 994- 1001, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE