簡易檢索 / 詳目顯示

研究生: 呂寧軒
Ning-Hsuan Lu
論文名稱: 近場伺服之遠近程結合控制與量化誤差效應補償
Far-Near field control and Quantization Effect Reduction for Optical Disc Drives
指導教授: 葉廷仁
Ting-Jen Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 85
中文關鍵詞: 伺服控制近場伺服量化誤差
外文關鍵詞: servo control, near field, quantization effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近場儲存在工藝上的核心 價值在於極小目標奈米級儲存單原、高資料密度,但光學高精度sensor其量測距離很短。
    本研究要工作為在sensor可量測範圍只有300nm的情況下,設計伺服控制法則使致動器能由相對遠距(5mm)平穩且快速地移動至近場動作間隙(約50nm),避免撞擊近場光碟片,並保持穩定。為此,本研究針對致動器的選取,遠程無sensor訊號時open loop的致動器控制,遠程控制轉為近程控制時的切換法則,近程控制時的控制器設計皆加以就理論基礎上加以研究討論,得到控制法則理論架構並以程式模擬與架構實驗設備對理論架構加以實現,由其結果來論證控制法則的可行性,目標為設計出一套最適合作為近場伺服控制的控制法則。
    此外,為了提高控制精度,針對D/A輸出時量化誤差對控制結果的影響加以討論,並設計一補償器,能只針對量化誤差造成的影響加以補償,不影響原來的控制法則,使量化誤差效應降低,提高控制精度。


    A near-field readout system using a traditional optical head has been proposed as a technology to increase the storage capacity. However, designing the far-field and the near-field controls so that they both can coordinate in an optimal manner presents challenges to control engineers. In this thesis, we develop a systematic procedure which uses the information on the plant dynamics, hardware limitations and performance specifications to design a far-near field control for optical disc drives. The experiments indicate that the controller designed can move the optical head rapidly from far field to near field without colliding with the optical disc. To further enhance the control performance, a quantization effect reduction (QER) method to reduce output error due to DAC quantization noises is also proposed. The QER technique offers a simple method of reshaping the spectrum of the quantization noise to minimize the output error. The proposed QER method decouples the quantization effect from control system that it does not affect the original control response. The limitation and optimality of the QER method are examined carefully. Experimental results reveal that output error caused from quantization error is reduced by more than a factor of five.

    1 Introduction 1 2 System identi…cation 3 2.1 Introduction of the system . . . . . . . . . . . . . . . . 3 2.2 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Far-…eld control 7 3.1 Input-shaping …lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Velocity control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Near-…eld control 19 4.1 LQG/LTR controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 Introduction for LQG/LTR control rule . . . . . . . . . . . . . . . . . . . 19 4.1.2 LQGnLTR controller design method . . . . . . . . . . . . . . . . . . . . 20 4.1.3 The design ‡ow of LQGnLTR controller . . . . . . . . . . . . . . . . . . 22 4.1.4 LTR controller for the system . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Gap reference and stopping force . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Combined control method and overall control system 31 5.1 Maximum entering velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1.1 Stopping force …ltered by input shaping . . . . . . . . . . . . . . . . . . . 31 5.1.2 The limitation of entering velocity . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Discussion about this two methods . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3 Combined control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6 Quantization E¤ect Reduction (QER) 49 6.1 Quantization Error Feedback (QEF) [5] . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 Anti-windup method for QE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3 Anti-windup for QE + QEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 1 6.3.1 L2 stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.2 Systematical design method . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.3 Experimental results for this design method . . . . . . . . . . . . . . . . 65 6.3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A LTR controller 75 A.1 The proof about recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A.1.1 Proof 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A.1.2 Proof 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A.1.3 Proof 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A.2 Recover other function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A.3 Robust test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    1 : Tsutomu Ishimoto, "Gap Servo System for Biaxial Device Using an Optical Gap Signal in a Near Field Readout System",SONY Corporation, January, 2003.
    2 : Michael Athans, "A Tutorial on The LQG/LTR Method", Proc. American Control Conference, June 1986.
    3 : Zhou, Kemin, "Robust And Optimal Control", Prentice Hall, 1996.
    4 : N.C. Singer, W.P. Seering, "Preshaping Command Inputs to Reduce System Vibration", ASME, March 1990.
    5 : Wei-Min Lu, Member, IEEE, Roger Wood, Member, IEEE, and Mantle Yu,"DAC Quantization Noise Reduction for Servo Control Systems in Hard Disk Drives",American Control Conference Boston, June 30 ~July 2,2004
    6 : John Doyle, Bruce Francis, Allen Tannenbaum, "Feedback Control Theory", Macmillan Publishing Co, 1990
    7 : Donald E.Kirk, "Optimal Control Theory An Introduction", PRENTICE-HALL, INC,1970.
    8 : Ting-Jen Yeh, "Modeling, Analysis and Control of Magnetically Levitated Rotating Machines." , Massachusetts Institute of Technology ,1996.
    9 : Luca Zaccarian, Andrew R. Teel, "A Common Framework for Anti-Windup, Bumpless Transfer and Reliable Designs", Automatic, 2002.
    10 : W.E. Singhose, W.P. Seering, N.C. Singer, "Time-Optimal Negative Input Shapers", ASME, June 1997.
    11 : Teel A. R., N. Kapoor, "The ℒ₂ Anti-Windup Problem: Its Definition and Solution.", Proceedings of the Fourth ECC, July, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE