研究生: |
許峻偉 Jiun-Wei Syu |
---|---|
論文名稱: |
行動通訊系統同頻干擾及訊雜比之空間關聯特性模型建立 Stochastic Models for the Spatial Correlation Properties of Total Co-Channel Interference and the Carrier-to- Interference Ratio in Mobile Communication Systems |
指導教授: |
蔡育仁
Yuh-Ren Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 行動通訊 、屏蔽效應 、功率高斯分佈 、高斯-馬可夫模型 、空間關聯特性 、同頻干擾 、訊雜比 、多重存取干擾 |
外文關鍵詞: | mobile communications, Shadowing effect, log-normal distribution, Gaussian-Markov model, spatial correlation, co-channel interference, carrier-to-interference ratio, multiple access interference |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線通訊訊號傳輸過程中無可避免會遭受到屏蔽效應,使得訊號在功率上呈現高斯分佈。1991年Gudmundson 的研究實驗指出,行動通訊系統之訊號變化可用高斯-馬可夫模型表達其空間關聯特性。此模型已被廣泛地使用在有關訊號強度的分析上。
然而,在行動通訊之系統分析及網路分析上,同頻干擾是相當重要的課題,相關的研究也很多。本論文首先研究行動通訊系統中,針對使用者的移動性,模擬同頻干擾之變化程度;然後提出一個高斯-馬可夫模型,表達其所接收到的同頻干擾之空間關聯特性,以期用以預測下一刻使用者將會接收到的同頻干擾之變化量。
訊雜比,無線通訊系統中一個評量傳輸通訊品質的重要指標。在本論文我們將提出方法及模型分別在有無多重存取干擾的情況下,用以預測使用者下一刻將接收到的訊雜比之變化程度。
所提出來的-行動通訊系統同頻干擾及訊雜比之空間關聯特性模型及方法。藉由和電腦模擬實際的比較上,可發現在預測下一刻使用者接收到的同頻干擾及訊雜比之變化程度有相當程度的準確性,並且具有省時的優點。此論文可應用於2G, 3G, B3G等行動通訊系統上的系統分析及網路分析。
所提出來的-行動通訊系統同頻干擾及訊雜比之空間關聯特性模型及方法。藉由和電腦模擬實際的比較上,可發現在預測下一刻使用者接收到的同頻干擾及訊雜比之變化程度有相當程度的準確性,並且具有省時的優點。
Shadowing effect, caused by the obstructions in the propagation path, is inevitable in mobile radio environments and will cause large variation in the received signal strength. The spatial correlation of shadow fading is exponentially decayed with the increasing of propagation distance and is modeled by Gudmundson as a stochastic process.
For a decade, the Gudmundson’s model for the spatial correlation of the shadowing is widely used for handoff and signals strength computation. However, none of papers has involved in the spatial correlation of total co-channel interference (CCI) according to the mobiles’ movement although the CCI have been discussed extensively. In this research we will propose a Gaussian-Markov model for the spatial correlation of total CCI and characterize the variations of total CCI with the simulation.
When the co-channel interference is present, the carrier-to-interference ratio is a figure of merit commonly used for quantifying the transmission quality in wireless communications. We wish to capture the CIR behavior as far as possible. A similar model and a methodology will be developed for the variation prediction of the carrier-to-interference ratio in mobile communications with/ without multiple access interference in CDMA systems.
The results show that the proposed models have high degree of accuracy to describe the spatial correlation properties and to predict the random behaviors of total CCI and the CIR in mobile communication with shadowing effect. Moreover, they can be applied to the applications such as handoff schemes design, link performance prediction, quality of service (QoS), downlink capacity analysis, and performance simulations, etc. in frequency-reused communications, such as 2G, 3G, and B3G.
[1] G. L. Stuber, Principles of Mobile Communication, 2nd Edition, Boston, Kluwer Academic Publishers, 2001.
[2] M. Gudmundson, “Correlation Model for shadow fading in mobile radio systems,” Electronics Letters, vol. 27, pp. 2145-2146, Nov. 1991.
[3] L. F. Fenton, “The sum of log-normal probability distributions in scatter transmission systems,” IRE Trans. Commun. Syst., vol. COM-8, pp. 57–67, Mar. 1960.
[4] S. C. Schwartz and Y. S. Yeh, “On the distribution function and moments of power sums with lognormal components,” Bell Syst. Tech. J., vol. 61, no. 7, Sept. 1982.
[5] A. Safak, “Statistical analysis of the power sum of multiple correlated log-normal components,” IEEE Trans. Veh. Technol., vol. 42, no. 1, pp. 58–61, Feb. 1993.
[6] A. A. Abu-Dayya and N. C. Beaulieu, “Outage probabilities in the presence of correlated lognormal interferers,” IEEE Trans. Veh. Technol., vol. 43, pp. 164–173, Feb. 1994.
[7] N. C. Beaulieu, A. A. Abu-Dayya, and P. J. MacLane, “Estimating the distribution of a sum of independent lognormal RVs,” IEEE Trans. Commun., vol. 43, pp. 2869–2873, Dec. 1995.
[8] P. Cardieri and T. S. Rappaport, “Statistics of the sum of lognormal variables in wireless communications,” IEEE VTC, pp.1823-1827, 2000
[9] R. Prasad and A. Kegel, “Effects of Rician faded and lognormal shadowed signals on spectrum efficiency in microcellular radio,” IEEE Trans. Veh. Technol, vol. 42, pp. 274–281, Aug. 1993.
[10] R. Prasad and A. Kegel, “Improved assessment of interference limits in cellular radio performance,” IEEE Trans. Veh. Technol., vol. 40, pp. 412–419, May 1991.
[11] A. Safak and R. Prasad, “Effects of correlated shadowing signals on channel reuse in mobile radio systems,” IEEE Trans. Veh. Technol, vol. 40, pp. 708–713, Nov. 1991.
[12] A. Safak and R. Prasad, “Multiple correlated log-normal interferers in mobile cellular radio systems,” Electronics Letters, vol. 28, pp. 1319-1321, July. 1992.
[13] R. Muammar and S. C. Gupta, “Co-channel interference in high capacity mobile radio systems,” IEEE Trans. Commun., vol. COM-30, pp. 1973–1982, Aug. 1982.
[14] A. Safak, “Optimal channel reuse in cellular radio systems with multiple correlated log-normal interferers,” IEEE Trans. Veh. Technol., vol. 43, pp. 304–312, May 1994.
[15] D. C. Cox, “Cochannel interference considerations in frequency reuse small-coverage-area radio systems,” IEEE Trans. Commun., vol. COM-30, pp. 135–142, Jan. 1982.
[16] M. J. Ho and G. L. Stuber, “Co-channel interference of microcellular systems on shadowed Nakagami fading channel,” IEEE VTC, pp. 568-571, May, 1993.
[17] X. Yang, S. Ghaheri-Niri, and R. Tafazolli, “Downlink soft handover gain in CDMA cellular network with cross-correlated shadowing,” IEEE VTC, pp 276-280, 2001.
[18] T. Klingenbrunn and P. Mogensen, “Modelling cross-correlated shadowing in network simulations,” IEEE VTC, pp 1407-1411, 1999.
[19] Y. S. Yeh and S. C. Schwartz, “Outage probability in mobile telephony due to multiple log-normal interferers,” IEEE Trans. Commun., vol. 32, pp. 380–388, Apr. 1984.
[20] M. Gudmundson, “Analysis of Handover Algorithms,” IEEE VTC, pp. 537-542, 1991.
[21] F. Santucci, M. Pratesi, M. Ruggieri, and F. Graziosi, “A general analysis of signal strength handover algorithms with co-channel interference,” IEEE Trans. Commun., vol. 48, pp. 231–241, Feb. 2000.
[22] M. Pratesi, F. Santucci, F. Graziosi, and M. Ruggieri, “Outage analysis in mobile radio systems with generically correlated log-normal interferers,” IEEE Trans. Commun., vol. 48, pp. 381–385, Mar. 2000.
[23] F. Graziosi, L. Fuciarelli, and F. Santucci, “Second order statistics of the SIR for cellular mobile networks in the presence of correlated co-channel interferers,” IEEE VTC, May. 2001.
[24] F.Graziosi, F. Santucci, Analysis of Second Order Statistics of the SIR in Cellular Mobile Networks, IEEE VTC, pp. 1316-1320, Sep. 1999.
[25] F. Graziosi, M. Pratesi, M. Ruggieri, and F. Santucci, “An improved analysis of outage probability with correlated cochannel interferers,” IEEE GLOBECOM, pp. 3710–3715, Nov. 1998.
[26] F. Graziosi, and F. Santucci, “ On SIR fade statistics in Rayleigh-lognormal channels,” IEEE ICC, pp.1352-1357, 2002.
[27] K. Sipilä, Z. C. Honkasalo, J. Laiho-Stefens, and A. Wacker, “Estimation of capacity and required transmission power of WCDMA downlink based on a downlink pole equation,” IEEE VTC, pp. 1002–1005, 2000.
[28] K. I. Pedersen and P. E. Mogensen,” The downlink orthogonality factors influence on WCDMA system performance,” IEEE VTC, pp. 2061-2065, 2002.
[29] N. B. Mehta, L. J. Greenstein, T. M. Willis, III, and Z. Kostic, “Analysis and results for the orthogonality factor in WCDMA downlinks,” IEEE Trans. Wireless Commun., pp.1138-1149, 2003.
[30] O. Awoniyi, N. B. Mehta, and L. J. Greenstein, “Characterizing the Orthogonality Factor in WCDMA Downlinks,” IEEE Trans. Wireless Commun., pp.621-625, 2003.
[31] H. Stark and J. W. Woods, Probability and Random Processes with Application to Signal Processing, 3rd Prentice Hill, 2002.
[32] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Washington, D.C. :/National Bureau of Standards, 1972
[33] J. G. Proakis, Digital Communications,4th McGraw-Hill, 2001
[34] T. S. Rappaport, Wireless Communications Principle and Practice, 2nd Prentice-Hall, 2002.
[35] J. D. Parsons, The mobile radio propagation channel, 2nd Wiley, 2000.
[36] S. R. Saunders, Antennas and propagation for wireless communication systems, Wiley, 1999.
[37] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to spread spectrum communications, Prentice-Hall, 1995.
[38] H. Holma and A. Toskala, WCDMA for UMTS, Wiley, 2001.
Part of this research have been accepted by IEEE GLOBECOM 2004