簡易檢索 / 詳目顯示

研究生: 劉士捷
Liu, Shih-Chieh
論文名稱: 錳氧化物超晶格磁性相變
Magnetic Transition of a LaMnO3-SrMnO3 Superlattice
指導教授: 黃迪靖
Huang, Di-Jing
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 67
中文關鍵詞: 超晶格磁性相變軟X光共振散射過渡金屬氧化物介面異質結構電子重組錳氧化物
外文關鍵詞: Superlattices, Magnetic transition, Resonant soft X-ray scattering, Transition metal oxides, Interface, Heterostructure, Electronic reconstruction, Manganese oxides
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用軟X光共振散射來研究過渡金屬氧化物磁性的有序行為。過渡金屬氧化物的物理性質決定於電荷、自旋以及軌域之間的交互作用。近年來,異質結構的介面物理現象是凝態物理學中熱門的研究題材,本論文藉由鑭錳氧-鍶錳氧(LaMnO3-SrMnO3)超晶格來研究介面中的電子結構以及磁性相變。

    軟X光共振散射有非常高的敏感度去量測過渡金屬氧化物3d軌域的自旋有序。我們利用X光反射率及X光繞射技術去檢驗鑭錳氧-鍶錳氧超晶格的品質。利用軟X光共振散射,我們直接量測出鑭錳氧-鍶錳氧超晶格的磁性狀態並發現其磁性相變溫度與鑭錳氧和鍶錳氧截然不同。本論文也證明鑭錳氧-鍶錳氧超晶格介面的電子與La1-xSrxMnO3類似。


    Transition-metal oxides exhibit interesting properties which can be used for a variety of applications. The interactions between spin, charge and orbital degrees of freedom give rise to a rich phase of transition-metal oxides. Recently, the interface of heterostructure has been a hot topic in condensed matter physics. Here we present studies the magnetic transition of a LaMnO3-SrMnO3 superlattice by using resonant soft X-ray scattering. We used X-ray reflectivity and diffraction to characterize the LaMnO3-SrMnO3 superlattice. Resonant soft X-ray scattering with photon energy turned at the Mn L-edge (2p->3d) is sensitive to magnetic ordering. We report on experimental evidence for magnetic transition of the superlattice. Electronic properties at the interface resemble those of La1-xSrxMnO3 giving us a great opportunity to understand the colossal magnetoresistance (CMR) of manganite.

    Contents 1 Manganite Superlattice................................1 1.1 Overview............................................1 1.2 Electron-Electron Correlations......................3 1.2.1 Mott Insulator....................................3 1.2.2 Jahn-Teller Distortion............................4 1.3 Exchange Interaction................................4 1.3.1 Superexchange.....................................5 1.3.2 Double Exchange...................................5 1.3.3 Magnetic Structure................................5 1.4 Superlattice........................................6 2 Experimental Techniques and Setups....................8 2.1 Soft X-ray Absorption Spectroscopy..................9 2.1.1 Basics of X-ray Absorption Theory.................9 2.1.2 XAS of Transition-Metal Oxides...................11 2.1.3 Experimental Setups .............................11 2.2 Resonant Soft X-ray Scattering.....................13 2.2.1 Thomson Scattering...............................13 2.2.2 Resonant Soft X-ray Scattering...................15 2.2.3 Experimental Setups..............................19 3 Structure Characterizations of LaMn03-SrMn03 Superlattice...........................25 3.1 Film Growth-Pulsed Laser Deposition................26 3.2 X-ray Reflectivity.................................27 3.2.1 Experimental Results.............................28 3.3 X-ray Diffraction..................................32 3.3.1 Experimental Results.............................32 4 Magnetic Order at the Superlattice Interfaces of Manganite..............................38 4.1 Introduction.......................................38 4.2 Electronic Properties of LaMnO3 and SrMnO3.........39 4.3 X-ray Absorption Spectrum of Superlattice..........40 4.3.1 Oxygen K-edge Absorption Spectrum................40 4.3.2 Manganese L-edge Absorption Spectrum.............41 4.4 Magnetic Soft X-ray Scattering of Superlattice.....42 4.4.1 Magnetic Properties of Superlattice..............42 4.4.2 Resonant Soft X-ray Magnetic Scattering..........44 5 Conclusions..........................................63 Bibliography...........................................65

    [1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
    [2] N. F. Matt., Metal-Insulator Transitions., Taylor and Francis, 1990.
    [3] J. G. Bednarz and K. A. Muller, Z. phys. 64, 189 (1986).
    [4] Y.Tokura, A.J.Millis, and Y. Endoh, Colossal Magnetoresistive Oxides, Gorden
    and Breach Science, 2000.
    [5] A. Bhattacharya et al., Phys. Rev. Lett. 100,257203 (2008).
    [6] A. Bhattacharya, X. Zhai, M. Warusawithana, J. N. Eckstein, and S. D.
    Bader, Applied Physics Letters 90, pN.PAG (20070528).
    [7] B. R. K. Nanda and S. Satpathy, Phys. Rev. B 79, 054428 (2009).
    [8] N. F. Matt, Proc. Phys. Soc. London Sect.A 62, 416 (1949).
    [9] K. Tobe, T. Kimura, Y. Okimoto, and Y. Tokura, Phys. Rev. B 64, 184421
    (2001).
    [10] Y. Murakami et al., Phys. Rev. Lett. 81, 582 (1998).
    [11] J. Hubbard, Proc. Phys. Soc. London, Sect. A 276, 238 (1963).
    [12] S. J. Blundell, Magnetism in Condensed Matter, Oxford, 2001.
    [13] H. Jahn and E. Teller, Proc. R. Soc. Land. A 161, 220 (1937).
    [14] P. W. Anderson, Phys. Rev. 79, 350 (1950).
    [15] C. Zener, Phys. Rev. 82, 403 (1951).
    [16] L. Esaki and R. Tsu, IBM J. Res. Develop 14, 61 (1970).
    [17] H. Bottner, G. Chen, and R. Venkatasubramanian, MRS Bulletin 31, 211
    (2006).
    [18] F. e. a. Groot, Core Level Spectroscopy of Solids, CRC Press, 2008.
    [19] M. Krips Repro, X-ray absorption transition metal oxide, 1991.
    [20] J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics, John
    Wiley & Sons, Ltd, 2001.
    [21] J. D. Jackson., Classical Electrodynamics, Wiley, 1999.
    [22] J. J. Sakurai, Modern quantum mechanics, Addison-Wesley, 1994.
    [23] M. Marder, Condensed Matter Physics, Wiley, 2000.
    [24] S. B. Wilkins, P. D. Hatton, M. D. Roper, D. Prabhakaran, and A. T.
    Boothroyd, Phys. Rev. Lett. 90, 187201 (2003).
    [25] P. Abbamonte et al., Nature 431, 1078 (2004).
    [26] A. Rusydi et al., Physical Review Letters 100, 036403 (2008).
    [27] J. Okamoto et al., Phys. Rev. Lett. 98, 157202 (2007).
    [28] S. W. Huang et al., Phys. Rev. Lett. 101,077205 (2008).
    [29] gerban Smadici et al., Phys. Rev. Lett. 99, 196404 (2007).
    [30] D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films, John
    Wiley & Sons, 1994.
    [31] Cullity and B. Dennis., Elements of X-ray diffraction, Upper Saddle River:
    Pearson Education International: Prentice Hall, 2001.
    [32] J. Chakhalian, Nature Phys. 2, 244 (2006).
    [33] A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419,378
    (2002).
    [34] Okamoto, Satoshi, and A. J. Millis, Nature 428, 630 (2004).
    [35] A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
    [36] S. Okamoto and A. J. Millis, Phys. Rev. B 70, 241104 (2004).
    [37] J. B. Goodenough, Phys. Rev. 100,564 (1955).
    [38] A. J. Millis, Phys. Rev. B 55, 6405 (1997).
    [39] J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 68, 054403 (2003).
    [40] R. S. ndena, P. Ravindran, S. S. len, T. Grande, and M. Hanfland, Phys.
    Rev. B 74, 144102 (2006).
    [41] M. Abbate et al., Phys. Rev. B 46, 4511 (1992).
    [42] C. Adamo et al., Phys. Rev. B 79, 045125 (2009).
    [43] H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, and Y. Tokura, Applied
    Physics Letters 89, 052506 (2006).
    [44] T. Satoh, K. Miyano, Y. Ogimoto, H. Tamaru, and S. Ishihara, Phys. Rev.
    B 72, 224403 (2005).
    [45] S. Dong et al., Phys. Rev. B 78, 201102 (2008).
    [46] N. Kida et al., Phys. Rev. Lett. 99, 197404 (2007).
    [47] C. Lin, S. Okamoto, and A. J. Millis, Phys. Rev. B 73, 041104 (2006).
    [48] C. Lin and A. J. Millis, Phys. Rev. B 78, 184405 (2008).
    [49] N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, Phys. Rev. B 78, 212409
    (2008).
    [50] K. S. Chao, Charge, Orbital, and Spin Order of Transition-Metal Oxides
    (Doctor's Thesis), National Chiao Tung University, 2007.
    [51] J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, Phys. Rev. Lett.
    61, 1245 (1988).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE