簡易檢索 / 詳目顯示

研究生: 張晉祥
Chin-Hsiang Chang
論文名稱: 壓電驅動式微幫浦製作與分析
Fabrication and Anslysis of piezoelectric micropump
指導教授: 賀陳弘
Hong Hocheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 79
中文關鍵詞: 壓電致動器微幫浦無閥式並聯幫浦
外文關鍵詞: piezoelectric actuator, micropump, valveless, parallel
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用微機電系統製程技術於4吋之矽晶片上製作微流體系統中之重要元件壓電式微幫浦,並將其單一或並聯運轉測試分析其流率。探討驅動電壓對壓電薄膜形變之影響與驅動電壓、驅動頻率對微幫浦流率之影響。實驗結果顯示壓電材料之位移量介於2.7μm到20.47μm之間,並隨著施加之頻率增加而減小。輸入壓電材料之方波電壓為140V,頻率為20Hz時,單一幫浦產生最大流量為91 ,可承受最大背壓為400Pa。以相同輸入訊號驅動,做並聯運轉時發現,並聯幫浦可有效增加流率;雙並聯幫浦可增加1.5倍,三並聯幫浦增加為2倍。此外,以回歸方法分析微幫浦之實驗結果,建立驅動頻率壓電材料與微幫浦流率的關係,闡述實驗所觀察到的現象。


    This study investigates the performance of the piezoelelctrically actuated micropump. The micropump is made by exposure, lithography, etching and bonding on 4 inch wafer.
    The effects of driving voltage and frequency on the displacement of piezoelectric material and the flow rate of the micropump are investigated. The experimental results indicate that the displacement of the piezoelectric material decreases with frequency. The displacements of the piezoelectric material range from 2.7μm-20.47μm. The flow rate of the micropump is proportional to the applied voltage. When operated at the voltage of 140 V and the frequency of 20 Hz, the flow rate of the single micropump is about 91 µ1/min with the back pressure of 400Pa. At the same input signal, the maximum flow rate of the double parallel micropump is 1.5 times of the single micropump, and is approximately twice of the single micropump for triple parallel operation.
    The relationship between frequency and flow rate obtained from measurement had been interpreted by physics principles and the derived mathematic regression method.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 XI 第一章 緒論 1 1.1研究動機 1 1.2研究背景 2 1.3研究目的 4 1.4文獻回顧 4 1.4.1靜電式微幫浦 5 1.4.2電磁式微幫浦 6 1.4.3熱氣壓驅動式微幫浦 8 1.4.4形狀記憶合金式微幫浦 10 1.4.5壓電式微幫浦 11 第二章 實驗規劃 19 2.1模組化微幫浦設計 19 2.2微幫浦之製作 19 2.2.1 微致動薄膜與微閥之製程 20 2.2.2流道設計 25 2.2.3微幫浦組裝 26 2.2.4量測基座設計 27 2.2.5 壓電材料 32 2.3實驗量測 36 2.3.1壓電材料性質量測 37 2.3.2微幫浦流率量測 38 第三章 實驗結果與討論 41 3-1壓電材料行為 41 3-2微幫浦流率 42 3-2-1頻率對幫浦流率的影響 42 3-2-2電壓對幫浦流率的影響 43 3-2-3單一幫浦 44 3-2-4並聯幫浦 46 3-3數學回歸模式 52 第四章 結論 66 參考文獻 68 附錄 流率量測數據 71

    參考文獻
    [1]R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, A Bidirectional Silicon Micropump, Sensors and Actuators, 50, 1995, pp. 81-86.
    [2]S. Bohm, W. Olthuis, P. Bergveld, A plastic micropump constructed with conventional techniques and materials, Sensors and Actuators, 77, 1999, pp. 223-228.
    [3]J. Jang, S. S. Lee, Theoretical and experimental study of MHD (magneto-hydrodynamic) micropump, Sensors and Actuators, 80, 2000, pp. 84-89
    [4]T. Pan, S. J. McDonald, E. M. Kai, B. Ziaie, A magnetically driven PDMS micropump with ball check-valves, Journal of Micromechanics and Microengineering, 15, 2005, pp.1021–1026
    [5]O. C. Jeong, S. S. Yang, Fabrication and test of a thermopneumatic micropump with a corrugated P+ diaphragm, Sensors and Actuators, 83, 2000, pp. 249-255
    [6] W. Y. Sim, H. J. Yoon, O. C. Jeong, S. S. Yang, A phase-change type micro-pump with aluminum flap valves, Journal of Micromechanics and Microengineering, 13, 2003, pp.286–294
    [7] E. Makino, T. Mitsuya, T. Shibata, Micromachining of TiNi shape memory thin film for fabrication of micropump, Sensors and Actuators, 79, 2000, pp. 251-259.
    [8] E. Makino, T. Mitsuya, T. Shibata, Fabrication of TiNi shape memory micropump, Sensors and Actuators, 88, 2001, pp. 256-262.
    [9] A. Olsson, G. Stemme, E. Stemme, A valve-less planar fluid pump with two pump chambers, Sensors and Actuators, A46-A47, 1995, pp.549-556.
    [10] A. Olsson, G. Stemme, E. Stemme, Diffuser-element design investigation for valve-less pumps, Sensors and Actuators, 57, 1996, pp.137-143
    [11] M. Koch, N. Harris, A. Evans, N. White and A. Brunnschweiler, A novel micromachined pump based on thick-film piezoelectric actuation, Sensors and Actuators, 70, 1998, pp. 98-103.
    [12] R. Linnemann, P. Woias, C-D. Senfft, and J.A. Ditterich, A self-priming and bubble-tolerant Piezoelectric silicon micropump for liquids and gases, IEEE, 1998, pp. 532-537.
    [13] C.G.J. Schabmueller, M. Koch, M.E. Mokhtari, A.G.R. Evans, A. Brunnschweiler and H. Sehr, Self-aligning gas/liquid micropump, Journal of Micromechanics and Microengineering, Vol. 12, 2002, pp. 420-424.
    [14]王安邦與張裕豐,壓電驅動型空氣幫浦之設計與製作,國立台灣大學碩士論文,1998。
    [15]姜銀明,無閥式壓電微幫浦,雲林科技大學機械工程學系碩士論文,2001
    [16]洪正翰,無閥式壓電蜂鳴片微幫浦,雲林科技大學機械工程系碩士論文,2003
    [17] J. H. Kim, CJ Kang, YS Kim, A disposable polydimethylsiloxane based diffuser micropump actuated by piezoelectric-disc, Microelectronic Engineering, 2004, pp.119 - 124
    [18] N. T. Nguyen, T. Q. Truong and Z. Wu, A Piezoelectric Micropump Based on Polymeric Micromachining, Sensors and Actuators, 2002, pp. 384-392
    [19]吳朗,電子陶瓷-壓電,全欣科技圖書股份有限公司,1994
    [20]周卓明,壓電力學,全華科技圖書股份有限公司,2003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE