研究生: |
洪千雅 Hung, Chien-Ya |
---|---|
論文名稱: |
原子層沉積氧化鋁薄膜於奈米碳管濕度感測器之開發 Development of humidity sensor using CNTs with Al2O3 conformal coating |
指導教授: |
方維倫
Fang, Wei-leun |
口試委員: |
王玉麟
Wang, Yu-Lin 胡志帆 Hu, Chih-Fan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 電阻式溼度計 、奈米碳管 、原子層沉積 、氧化鋁 |
外文關鍵詞: | Resistance-type humidity sensor, carbon nanotubes, atomic layer deposition, Al2O3 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用原子層沉積系統將氧化鋁(Al2O3)薄膜順應性(Conformally)地沉積至奈米碳管(CNTs)的表面上。奈米碳管材料對於水氣吸附後具有電阻變化的特性,而氧化鋁亦為相當優異之吸濕材料。因此,本研究進一步以奈米碳管為模具並將氧化鋁薄膜均勻的沉積其上,形成一奈米碳管/氧化鋁複合感測材料,藉此提升奈米碳管濕度感測器之元件靈敏度。並於感測材料下方整合多晶矽微型加熱器,增加排濕能力且避免水氣凝結。本研究之特色為: (1) 原子層沉積技術可將氧化鋁均勻沉積至叢聚奈米碳管中每一根碳管的表面;(2) 利用奈米碳管的結構特性使沉積之氧化鋁材料同時具有高體表面積之特色;(3) 利用氧化鋁材料之高吸濕能力與表面親水性以提高元件之靈敏度。量測結果針對純奈米碳管感測材料與奈米碳管/氧化鋁複合材料進行比較,其結果顯示,使用奈米碳管/氧化鋁複合材料其靈敏度具有7倍之提升。
This study presents a resistance-type humidity sensor using carbon nanotubes (CNTs) with Al2O3 coating. CNTs are typical materials for gas sensing and have the property resistance changing when absorbing moisture. Al2O3 is an excellent material for moisture absorption. Thus, this study uses the serpentine CNTs design integrated with Al2O3 conformal coating by Atomic Layer Deposition (ALD) process to form a CNTs/ Al2O3 composite for enhanced sensitivity of a humidity sensor. Features of this approach: (1) ALD Al2O3 to penetrate CNTs cluster and conformally coat on each CNTs surface; (2) High surface-to-volume ratio sensing structure offered by CNTs; (3) High moisture absorption capability offered by Al2O3 coating. Measurement results show that the sensitivity of the humidity sensors with 300°C annealed CNTs/ Al2O3 composite is ~7-folds higher than that of bare-CNTs.
[1] Yole Developpement Co., heep://www.yole.fr/
[2] Institute for Information Industry FIND., http://www.find.org.tw/
[3] Postscape LLC., http://www.postscapes.com/
[4] K. Altun, B. Billur, and T. Orkun, “Comparative study on classifying human activities with miniature inertial and magnetic sensors,” Pattern Recognition, vol.43, pp.3605-3620, 2010.
[5] S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, “Towards the implementation of IoT for environmental condition monitoring in homes,” IEEE Sensors Journal, vol.13, pp.3846-3853, 2013.
[6] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Appl. Phys. Lett., vol.79, no.8 , pp.1172-1174, 2001.
[7] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett, vol.87, 2007.
[8] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, vol.287, pp.637-640, 2000.
[9] Z. h. Khan, M. Husain, T. P. Pemg, N. Salah, and S. Habib, “Electrical transport via variable range hopping in an individual multi-walled carbon nanotube,” Journal of Physics: Condensed Matter., vol.20, pp.415207, 2008.
[10] Market Research Future, https://www.marketresearchfuture.com/
[11] B. Sorli, F. Pascal-Delannoy, A. Giani, A. Foucaran, and A. Boyer, "Fast humidity sensor for high range 80–95% RH," Sensors and Actuators A: Physical, vol.100, pp.24-31, 2002.
[12] M. A. Hilhorst, "A Pore Water Conductivity Sensor," Soil Science Society of America Journal, vol.64, pp 1922-1925, 2000.
[13] J. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 5th ed., Berlin/Heidelberg, Germany: Springer, 2016.
[14] Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, "Capacitive humidity sensor design based on anodic aluminum oxide," Sensors and Actuators B: Chemical, vol.141, pp.441-446, 2009.
[15] V. P. J. Chung, C.-L. Cheng, M.-C. Yip, and W. Fang, “A CMOS capacitive vertical-parallel-plate-array humidity sensor with RF-aerogel fill-in for sensitivity and response time improvement,” IEEE MEMS, pp.767-770, 2015.
[16] U. Kang and K. D. Wise, “A high-speed capacitive humidity sensor with on-chip thermal reset,” IEEE Transactions on Electron Devices, vol.47, pp.702-710, 2000.
[17] K. K. Mistry, D. Saha and K. Sengupta, “Sol–gel processed Al2O3 thick film template as sensitive capacitive trace moisture sensor,” Sensors and Actuators B, vol.106, pp.258-262, 2005.
[18] K. S. Shamala, L. C. S. Murthy, M. C. Radhakrishn and K. N. Rao, “Characterization of Al2O3 thin films prepared by spray pyrolysis method for humidity sensor,” Sensors and Actuators A, vol.135, pp.-552-557, 2007.
[19] C. Y. Lee and G. B. Lee, “Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation,” Journal of Micromechanics and Microengineering, vol.13, pp.620-627, 2003.
[20] J. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 4th ed., Berlin/Heidelberg, Germany: Springer, 2010.
[21] Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid, and Y. Wei, “Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers,” Journal of the American Chemical Society, vol.130, pp.5036-5037, 2008.
[22] C. L. Dai, M. C. Liu, F. S. Chen, C. C. Wu, and M. W. Chang, “A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique,” Sensors and Actuators B, vol.123, pp.896-901, 2007.
[23] P. G. Su, C. J. Ho, Y. L. Sun, and I. C. Chen, “A micro machined resistive-type humidity sensor with a composite material as sensitive film,” Sensors and Actuators B, vol.113, pp.837-842, 2006.
[24] O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey and C. A. Grimes, “Gas sensing characteristics of multi-wall carbon nanotubes,” Sensor and actuator B, vol.81, pp.32-41, 2001.
[25] Q. Y. Tang, Y. C. Chan and K. Zhang, “Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films,” Sensor and actuator B, vol.152, pp.99-106, 2011.
[26] K. P. Yoo, L. T. Lim, N. K. Min, M. J. Lee, C. J. Lee and C. W. Park, “Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films,” Sensors and actuators B, vol.145, pp.120-125, 2010.
[27] P. G. Su and C. S. Wang, “In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor,” Sensors and actuators B, vol.124, pp.303-308, 2007.
[28] J. S. Lee, B. Min, K. Cho, S. Kim, J. Park, Y. T. Lee, N. S. Kim, M. S. Lee, S. O. Park and J. T. Moon, “Al2O3 nanotubes and nanorods fabricated by coating and filling of carbon nanotubes with atomic-layer deposition,” Journal of Crystal Growth, vol.254, pp.443-448, 2003.
[29] K. L. Stano, M. Carroll, R. Padbury, M. McCord, J. S. Jur and P. D. Bradford, “Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays,” ACS Appl. Mater. Interfaces, vol.6, pp.19135-19143, 2014.
[30] A. B. Shoultz, S. Tawfick, S. J. Park, M. Bedewy, M. R. Maschmann, J. W. Baur and A. J. Hart, “scaling the stiffness, strength, and toughness of ceramic-coated nanotube foams into the structural regime,” Adv. Funct. Mater., vol.24,pp.5728-5735, 2014.
[31] Y. Zhang, B. Liu, E. Hitz, W. Luo, Y. Yao, Y. Li, J. Dai, C. Chen, Y. Wang, C. Yang, H. Li, and L. Hu, “A carbon-based 3D current collector with surface protection for Li metal anode,” Nano Research, vol.10, pp.1356-1365, 2017.
[32] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus and M. S. Dresselhaus, “Size effects in carbon nanotube,” Physical Review Letters, vol. 81, pp.1869-1872, 1998.
[33] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, pp. 883-891, 1995.
[34] S. Dohn, J. Kjelstrup Hansen, D. N. Madsen, K. Molhave, and P. Bolgild, “Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain,” Ultamicroscopy, vol. 105, pp. 209 - 214, 2005.
[35] Y. Saito and S. Uemura, “Field emission from carbon nanotubes and its application to electron sources,” Carbon, vol. 38, pp. 169 - 182 ,2000.
[36] B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes: C-1,000,000 and beyond,” American Scientist, vol. 85, pp. 324,1997.
[37] B. C. Statishkumar, A. Govindaraj, and C. N. R. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene - hydrocarbon mixtures: role of the metal nanoparticles produces in situ,” Chemical Physics Letters, vol.307, pp. 158-162 ,1999.
[38] A. Gordon, E. Molinelli, and T. Baker, "Large‐scale relative dynamic topography of the Southern Ocean," Journal of Geophysical Research: Oceans, vol. 83, no. C6, pp. 3023-3032, 1978.
[39] C. J. Lee, J. Park, J. A. Yu “Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition,” Chemical Physics Letters, vol.360, pp. 250-255, 2002.
[40] M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin, S. T. Kim “Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2,” Thin Solid Films, vol.398-399, pp.150-155, 2001.
[41] Y. Y. Wei, G. Eres, V. I. Merkulov and D. H. Lowndes "Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition," Applied Physics Letters, vol. 78, no. 10, 2001.
[42] X. Dong, B. Li, A. Wei, X. Cao, M. B. Chan-Park, H. Zhang, L. J. Li, W. Huang and P. Chen, “One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition.” Carbon, Vol. 49, issue 9, pp. 2944-2949, 2011.
[43] http://web.it.nctu.edu.tw/
[44] A. Rückerl, R. Zeisel, M. Mandl, I. Costina, T. Schroeder and M. H. Zoellner, “Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3,” Journal of Applied Physics, vol. 121, issue 2, 2017.
[45] L Zhang, H C Jiang, C Liu, J W Dong and P Chow, “Annealing of Al2O3 thin films prepared by atomic layer deposition,” J. Phys. D: Appl. Phys., vol.40, pp.3707-3713, 2007.
[46] U. Grossner, M. Servidori, M. Avice, O. Nilsen, H. Fjellvåg, R. Nipoti and B. G. Svensson, “X-ray and AFM Analysis of Al2O3 Deposited by ALCVD on n-Type 4H-SiC,” Materials Science Forum, pp.683-686, 2007.
[47] L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi and S. Santucci, “Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection,” Diamond and Related Materials, Vol. 13, issue 4-8, pp. 1301-1305, 2004.
[48] Y. Jiang, P. Wang and L. Lin “Contact and sheet resisstances of carbon nanotube forest in gas sensing applications,” IEEE MEMS, pp. 396-399, 2011.
[49] A. Bsoul, M. S. M. Ali, A. Nojeh and K. Takahata, “Piezoresistive strain sensing using carbon nanotube forests suspended by Parylene-C membranes,” Applied Physics Letters, vol. 100, issue 21, no. 213510, 2012.
[50] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology. John Wiley & Sons, 1994.
[51] T. Iijima, H. Oshima, Y. Hayashi, U. Suryavanshi, A. Hayashi and M. Tanemura, "Morphology control of a rapidly grown vertically aligned carbon‐nanotube forest for fiber spinning," Physica Status Solidi (A), vol. 208, no. 10, pp. 2332-2334, 2011.
[52] T. Ueda, S. Katsuki, K. Takahashi, H.A. Narges, T. Ikegami, F. Mitsugi, “Fabrication and characterization of carbon nanotube based high sensitive gas sensors operable at room temperature,” Diamond and Related Materials, vol. 17, issue 7-10, pp. 1586-1589, 2008.
[53] OMEGA Engineering inc., https://cn.omega.com/
[54] C. F. Hu, C. M. Lin, and W. Fang, “Integration of PDMS-infiltrated CNTs and Si bulk-micromachining for monolithic physical sensors application,” Transducers, Barcelona, pp.1565-1568, 2013.
[55] S. C. Chen, V. P.J. Chung, D. J. Yao and W. Fang, “Vertically integrated cmos-mems capacitive humidity sensor and a resistive temperature detector for environment application,” Transducers, Kaohsiung, pp. 1453-1456, 2017.
[56] C. Hong, L. Chu, W. C. Lai, A. S. Chiang and W. Fang, “Implementation of a New Capacitive Touch Sensor Using the Nanoporous Anodic Aluminum Oxide (np-AAO) Structure,” IEEE Sensors Journal, vol. 11, issue 12, pp. 3409-3416, 2011.
[57] C. F. Hu, J. Y. Wang, Y. C. Liu, M. H. Tsai and W. Fang, “Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application,” Nanotechnology, vol. 24, no.44, 2013.