簡易檢索 / 詳目顯示

研究生: 陳志明
論文名稱: 被動式水膠時序控制微動閥門之設計與製造
Design and Fabrication of Hydrogel-based Passive Valve
指導教授: 曾繁根
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 水膠被動式微動閥門
外文關鍵詞: hydrogel, passive, micro-valve
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    一個不需要任何外加動力且操作手續簡單的的被動式生醫晶片一直是微機電領域努力研究的重點產品,但是目前在控制樣本在檢測區反應的停留時間,還是避免不了需要一個外加動力源來操作微動閥門並控制流體的運行。
    因此,為了實現完全無外加動力源的被動式的生醫晶片,一個可以自發性控制時間的被動式閥門元件是一項必要的發展,也是一樣艱鉅的挑戰,在此,我們利用彈性體材料PDMS製作出被動式閥門並利用幾何結構來自動停止流體,並利用水膠吸水膨脹的特性形成一個丁字型微制動器來造成閥門結構的形變,藉此自動開啟閥門,讓流體再度流動。
    在此選用的水膠材料為Poly(ethylene glycol) diacrylate (PEGDA) ,為一高含水量的光聚合型水膠,固化後的吸水膨脹量為50%左右,製作於在流道中的吸水膨脹伸長速率為10~30um/min,原本寬度為40um的閥門口,經過丁字型水膠微制動器的驅動後,其寬度會拓寬至55um,經過這樣的形變可以使得其被動式閥門從關閉的狀態轉變成開啟的狀態,一個水膠被動式時序控制閥門可以延遲流體時間從0.1秒延長到一分半左右。


    第一章 序論 1.1 前言.............................................4 1.2 生醫實驗室晶片(Bio-Lab-on-a-chip)................5 1.3 水膠簡介.........................................8 1.4 研究目標.........................................11 1.4.1 被動式時間閥門(Time-Gate) .................12 1.4.2 胰島素免疫檢測區在晶片上之整合.............14 1.4.3 微流道系統之備製...........................15 第二章 文獻回顧 2.1 微動閥門(Micro-valve)之簡介......................18 2.2 無外加動力被動式閥門.............................21 2.3 水膠控制式閥門...................................22 2.4 被動式時間閥門之分析.............................25 2.5 水膠之結構備製...................................27 第三章 被動式閥門之研究歷程及備製 3.1 幾何結構分析.....................................32 3.2 材料選擇歷程暨備製...............................36 第四章 結果與討論 4.1 被動式閥門幾何結構研究成果.......................47 4.2 水膠形狀定義製程之歷程與結果.....................51 4.2.1 SU8/PEGDA濕式製程..........................51 4.2.2 SU8/粉狀PEG濕式製程........................53 4.2.3 PEGDA乾式製程..............................54 4.2.4 PEGDA翻模製程..............................56 4.2.5 PEGDA毛細力輔助顯影製程....................57 4.2.6新一代PEGDA毛細力輔助顯影製程..............60 第五章 結論與未來工作....................................64 附錄.....................................................66 參考文獻.................................................90

    參考文獻
    [1]J. Steigert, M. Grumann, T. Brenner, K. Mittenbu hler, T. Nann, J. Ru¨he, I. Moser, S. Haeberle, L. Riegger, J. Riegler, W. Bessler, R. Zengerle, and J. Ducree. Integrated Sample Preparation, Reaction, and Detection on a High-frequency Centrifugal Microfluidic Platform. JALA 2005 October 331.

    [2]陳明宏 曾繁根, 數位化微流體操縱技術, 科學發展 2006年9月 405期.

    [3]T. Tanaka, D. Fillmore, S. Sun, I. Nishio, G. Swislow, A. Shah, Phase transitions in ionic gels, Phys.Rev.Lett.45(1980)1636-1639.

    [4]Jing Wang, Zongyuan Chen, Michael Mauk, Kuang-Cheng Hong, Mengyan Li, Shu Yang and Haim H. Bau, Self-actuated, Thermo-Responsive Hydrogel Valves for Lab on a Chip, Biomedical Microdevices 2005, 7:4, 313-322.

    [5]A. Suzuki, T Tanaka, Phase transition in polymer gels induced by visible light, Nature 346 (1990) 345-347.

    [6]T. Tanaka, S. Sun, I. Nishio, Ueno-Nishio, Collapse of gels in an electric field, Science 218 (1982) 467-469.

    [7]N. Kato, F. Takahasi, S. Yamanobe, Property of magneto-driven poly (N-isopropylacrylamide) gel containing iron oxide in NaCl solution as a chemomechnical device, Mater. Sci. Eng. C, Biol. C5 (1997) 141-147.

    [8]K. Kataoka, H. Miyazaki, M. Bunya,T. Okano, Y. Sakurai, Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release, J Am. Chem. Soc. 120 (1998) 12694-12695.

    [9]Richard A. Gemeinhart and Chunqiang Guo, Reflexive Polymers and Hydrogels Chap13 Fast Swelling Hydrogel Systems, 245-253.

    [10]Valerie A. Liu, Sangeeta N. Bhatia, Three-Dimensional Photopatterning of Hydrogels Containing Living Cells, Biomedical Microdevices 2002 4:4, 257-266.

    [11] Terry S C, Jerman J H and Angell J B , A gas chromatographic air analyzer fabricated on a silicon wafer , IEEE Transactions on Electron Devices,1979, ED-26 (12):1880∼1886.

    [12] Kwang W Oh and Chong H Ahn, A review of microvalves, JOURNAL OF MICROMECHANICS AND MICROENGINEERING 16 (2006) R13–R39

    [13]Bae B, Kee H, Kim S, Lee Y,Sim T, Kim Y and Park K, Feasibility test of an electromagenically driven valve actuator for glaucoma treatment. J. Microelectromech Syst 2002, 11 344-54.

    [14]Teymoori M M and Abbaspour- Sani E Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications Sensors Actuators A 2005, 117 222–9

    [15]Li H Q, Roberts D C, Steyn J L, Turner K T, Yaglioglu O, Hagood N W, Spearing S M and Schmidt M A Fabrication of a high frequency piezoelectric microvalve Sensors Actuators A 2004, 111 51–6

    [16]Prof. Dr. Roland Zengerle, Tobias Metz, Microfluidic Platforms 2. Capillary Driven Systems, Slide No. 42.

    [17]Eddington D T & Beebe D J, A valved responsive hydrogel microdispensing device with integrated pressure source, J. Microelectromech. Syst 2004, 13 586–593.

    [18]David J Beebe, Jeffery S. Moore, Functional hydrogel structures for autonomous flow control inside microfluidic channels, NATURE |VOL 404 | 6 APRIL 2000.

    [19]R.H. Liu, Q. Yu, D.J. Beebe, Fabrication and characterization of hydrogel-based microvalves, J. Microelectromech. S. 11 (2001) 45–53.

    [20] P. F. Man, C. H. Mastrangelo, M. A. Burns, and D. T. Burke, MICRO- FABRICATED CAPILLARITY-DRIVEN STOP VALVE AND SAMPLE INJECTOR, MEMS Conference 1998, Heidelberg, Germany, Jan. 25-29.

    [21] Ali Khademhosseini, Molded polyethylene glycol microstructures for capturing cells within microfluidic channels, Lab-on-a-chip, 2004, 4 , 425-430.

    [22]Mary B. Chan-Park, Yehai Yan, Wee Koon Neo, Wenxiu Zhou, Jun Zhang, and Chee Yoon Yue, Fabrication of High Aspect Ratio Poly(ethylene glycol) -Containing Microstructures by UV Embossing, Langmuir 2003, 19, 4371-4380.

    [23]David T. Eddington and David J. Beebe, Flow control with hydrogels, Advanced Drug Delivery Reviews 56 (2004) 199– 210.
    [24] Ai Ping Zhu, Mary B. Chan-Park, Jian Xia Gao, Foldable Micropatterned Hydrogel Film Made from Biocompatible PCL-b-PEG-b-PCL Diacrylate by UV Embossing, J. Biomed Master Res. Part B: Appl. Biomster 2006 76B: 76-84.

    [25] Measurements of Insulin and Glucose, Joseph Wang, Alfredo Ibanez, and Madhu Prakash Chatrathi, On-Chip Integration of Enzyme and Immuno- assays: Simultaneous J. AM. CHEM. SOC. 2003, 125, 8444-8445.

    [26] Subramanian Viswanathan and Ja-an Annie Ho, Dual electrochemical determination of glucose and insulin using enzyme and ferrocene microcapsules, Biosensors and Bioelectronics 22 (2007) 1147–1153.

    [27]Joseph Wang, Tanin Tangkuaram, Suchera Loyprasert, Terannie Vazquez- Alvarez, Waret Veerasai, Proespichaya Kanatharana, Panote Thavarungkul, Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes, Analytica Chimica Acta 581 (2007) 1–6.

    [28] Zhongfan Liu, Ziyong Shen, Tao Zhu, Shifeng Hou, and Lizhen Ying, Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique, American Chemical Society APRIL 18, 2000 VOLUME 16, NUMBER 8.

    [29]Nae Yoon Lee, Ju Ri Lim, Youn Sang Kim, Selective patterning and immobilization of biomolecules within precisely-defined micro-reservoirs, Biosensors and Bioelectronics 21 (2006) 2188–2193.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE