簡易檢索 / 詳目顯示

研究生: 吳志偉
Chih-Wei Wu
論文名稱: 鋯基塊狀金屬玻璃之傳輸性質研究
Transport properties of Zr-based bulk metallic glasses
指導教授: 齊正中
Cheng-Chung Chi
林志忠
Jung-Jong Lin
洪在明
Tzay-Ming Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 63
中文關鍵詞: 鋯基金屬玻璃電阻超導
外文關鍵詞: ziconium-based, metallic glass, resistivity, superconductivity, BMGs
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於大多數的文獻對於塊狀非晶合金的研究,通常對於力學性質方面的探討相較於物理性質方面來得多,所以本論文主要著重在研究鋯基塊狀非晶合金物理性質探討。藉由傳統銅模鑄造法,我們得到了三個以鋯為主要元素的合金,分別是Zr50Cu40Al10、Zr50Cu30Ni10Al10和Zr41.5Ti13.8Cu12.5Ni10Be22.5。將上列三種非晶相合金研磨成薄片之後,拿去經X-RAY diffraction確定其結構為「非晶相」,再利用傳統四點量測方法去測量其超導溫度、4.2-300K電阻率的變化、加9 Tesla磁場下4.2-300K電阻率的變化及不同定溫下的磁阻變化,以瞭解其性質,並試著找出解釋方法。後來結果發現對於電阻率在溫度4.2-300K的變化,無法完全的以已提出的理論模型來解釋,可能需要考慮其它修正或建立更完整的理論模型才行;此外,三個合金都有超導溫度,分別是0.61K、0.61K、0.73K;經由加入9 Tesla磁場,含10%鎳的Zr50Cu30Ni10Al10和Zr41.5Ti13.8Cu12.5Ni10Be22.5的電阻率並沒有明顯的變化,表示鎳在高磁場下對於電阻率幾乎沒有貢獻;最後這個三個合金只有在低溫(5K)的時候呈現正磁阻,而在其他溫度(100K、200K、300K)時磁阻並沒有太明顯的變化,除了Zr50Cu40Al10在高溫300K時有些許逆磁阻的趨勢。


    We have measured the superconductivity transition temperature and transport properties of the three Zr-based bulk metallic glasses(BMGs), Zr_{50}Cu_{40}Al_{10}, Zr_{50}Cu_{30}Ni_{10}Al_{10}, and Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5} which were fabricated by using the ladle-hearth type arc-melt tilt-casting machine. At first,We determine the amorphous state of these alloys by X-ray diffraction pattern. The resistivities of them at room
    temperature are 350, 236, 196 micro-omega cm, respectively. And the temperature coefficients of the resistivities (TCR) are all negative. We also fit the temperature dependence to
    rho=a[1+be^{-2W(T)}] from 4.2K to 300K. By using this formula, we can calculate the Debye temperatures of the three Zr-based BMGs. At much lower temperature, the superconducting transition temperature of the BMGs is separately determined by using a 3He low temperature measurement system and their Tc are 0.61K, 0.61K, 0.73K, respectively. The magnetoresistance of theses three
    BMGs show that when the temperature is 5K, all of them exhibit positive magnetoresistance due to the superconducting fluctuation, but at other fixed temperature such as 100K, 200K, 300K, there are no apparent field dependence of the resistance, except for the Zr_{50}Cu_{40}Al_{10} that exhibits small variation negative magnetoresistance at 300K.

    1 Introduction and Motivation 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Background 6 2.1 A briefer history of Bulk metallic glasses . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Early development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 The birth of bulk metallic glasses . . . . . . . . . . . . . . . . . . . . 7 2.2 Glass transition temperature and Glass forming ability . . . . . . . . . . . . 11 2.2.1 Glass transition temperature (Tg) . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Glass forming ability (GFA) . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 The empirical rules of amorphus alloys . . . . . . . . . . . . . . . . . . . . . 16 2.4 The systems of glassy metals . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 The characteristics of bulk metallic glasses . . . . . . . . . . . . . . . . . . . 19 2.6 Reviews for electron transport of amorphous alloys . . . . . . . . . . . . . . 21 2.6.1 Free electron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.2 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Theory of bulk metallic glasses 29 3.1 The Di®raction Model: Ziman-Faber Theory . . . . . . . . . . . . . . . . . 29 4 Results and Discussions 31 4.1 X-ray di®raction measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Resistivity measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Superconductivity measurement . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 Magnetoresistance measurement . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Conclusions and future work 58

    [1] Inoue A., Zhang T,Masumoto T., Mater. Trans. JIM. 31(2), 177 (1990).
    [2] Zhang T., Inoue A., Masumoto T., Mater. Trans. JIM. 32, 1005 (1991).
    [3] Peker A, Johnson W. L., Appl. Phys. Letter 63, 2342 (1993).
    [4] P. Duwez, RH Wilens, W. Klement. Appl. Phys. Lettters 31,1136 (1960).
    [5] Greer A. L., Science 167, 1974 (1995).
    [6] Johnson W. L., Prog. Mater. Sci. 30, 81 (1986).
    [7] Daveis H. A., in: Luborsky F. E.(Ed.), Amorphous Metallic Alloys, Butterworths, Lon-
    don, p. 8 (1983).
    [8] Kavesh S., in: Gillman J. J., Leamy H. L.(Eds.), Metallic Glasses,ASM International,
    Metals Park, OH, Chapter 2 (1978).
    [9] Turnbull D., Trans. AIME 221, 422 (1961).
    [10] Chen H. S., Turnbull D., J. Chem. Phys. 48, 2560 (1968).
    [11] Chen H. S., Turnbull D., Acta Metall. 17, 1021 (1969).
    [12] Turnbull D., Fisher J. C., J. Chem. Phys. 17. 71 (1949).
    [13] Turnbull D., Contemp. Phys. 10, 437 (1969).
    [14] Chen H. S., Acta Metall. 22, (10), 42 (1974).
    [15] Drehman A. L., Greer A. L., Turnbull D., Appl. Phys. Letters 41, 716 (1982).
    [16] Kui W. H., Greer A. L., Turnbull D., Appl. Phys. Letters 45, 615 (1984).
    [17] Inoue A., Zhang T., Masumoto T., Mater. Trans. JIM. 30, 965 (1989).
    [18] Inoue A., Kato A., Zhang T., Kim SG., Masumoto T., Mater. Trans. JIM. 32, 609
    (1991).
    [19] Inoue A., Nishiyama N., Kimura H., Mater. Trans. JIM. 38, 179 (1997).
    [20] Buchnana O., Bulk metallic glasses used for manufacturing net-shape metal products.
    MRS Bull 27, 850 (2002).
    [21] Reed-Hill R. E., Physical Metallurgy Principles, Third Edition, PWS Publishing Co.,
    Boston p.431 (1991).
    [22] Z. P. Lu, Y. Li, S. C. Ng, J. Non-Crystalline Solids 270, 103 (2000).
    [23] Inoue A., Zhang W., Zhang T., Kurosaka K., Acta Materialia 49, 2645 (2001).
    [24] Waniuk T. A., Schroers J., Johnson W. L., Appl. Phys. Letters 78, 1213 (2001).
    [25] Z. P. Lu, C. T. Liu, Acta Materialia 50, 3501 (2002).
    [26] Inoue A., Acta Materialia 48, 279 (2000).
    [27] Inoue A., Mater. Trans. JIM. 36, 866 (1995).
    [28] Jones H., Ultrarapid Quenching of Liquid Alloys(Edited by Herman H.), pp1 ¡ 62.
    Academic Press, New York (1981).
    [29] Moruzzi V. L., Oelhafen P., Williams A. R., Lapka R., GÄuntherodt H. -J., Kubler J.,
    Phys. Rev. B27, 2049 (1983).
    [30] GÄuntherrodt H. -J., MÄuller M., Oberle R., Hauser C., KÄunzi H. U., Liard M., MÄuller
    R., Inst. Phys. Conf. Ser. 39, 436 (1978).
    [31] GÄuntherodt H. -J., KÄunzi H. U., Metallic Glasses(Edited by Parks O.), pp247 ¡ 274.
    American Society of Metals (1978).
    [32] Nagel S,R., Phys. Rev. Letters 41, 990 (1978).
    [33] Mooij J. H., Phys. Status Solidi a17, 521 (1973).
    [34] Ziman J. M., Phil. Mag. 6, 1013 (1961).
    [35] Faber T. E., Ziman J. M., Phil. Mag. 11, 153 (1965).
    [36] Naugle D. G., J. Phys. Chem. Solids 45, 367 (1984).
    [37] Y. Li, H. Y. Bai, P. Wen, Z. X. Liu, Z. F. Zhao, J. Phys.: Condens. Matter 15, 4809
    (2003).
    [38] Elliott S. R. Physics of Amorphous Materials, pp304 ¡ 306. Longman Scienti‾c-
    Technical, New York (1990).
    [39] Jian-gang Huang, Rang-su Liu, Feng-ying Wu, Journal of Hunan University 27, 2
    (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE