研究生: |
張文雅 Chang, Wen-Ya |
---|---|
論文名稱: |
2’, 3’-cGAMP作為台灣眼鏡蛇磷酸二酯酶底物的活性分析及其小分子抑制物 2’, 3’-cGAMP as a substrate for snake venom phosphodiesterase from Taiwan cobra (Naja atra) |
指導教授: |
吳文桂
Wu, Wen-Guey |
口試委員: |
黃維寧
HUANG, WEI-NING 李紹禛 LEE, SHAO-CHEN |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 台灣眼鏡蛇 、蛇毒磷酸二酯酶 、蛇咬傷 |
外文關鍵詞: | 2', 3'-cGAMP, snake venom phosphodiesterase, cGAS-STING pathway |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據先前的研究,純化Naja atra蛇毒過程中,觀察到高分子量的蛋白,經由純化後,得到蛇毒磷酸二酯酶 (svPDE) 的醣蛋白,並且不帶有毒性,svPDE的功能尚未被徹底研究,因此想知道在蛇毒中是否扮演特別的角色。svPDE催化活性口袋的結構中帶有兩顆鋅離子,和Insert loop構成活性催化域;在演化上,藉由胺基酸的比對,發現與人類ENPP1和ENPP3蛋白家族很類似,並且與ENPP3為同源物。一種稱為cGAS-STING的先天性免疫反應,cGAS會將DNA合成為2’, 3’-cGAMP,並活化該系統,其中人類ENPP1在許多文獻中被發現,能夠水解2’, 3’-cGAMP,對於cGAS-STING有著負向調控的功能。因此我們猜測當被蛇咬傷時,被破壞細胞的DNA或粒線體DNA漏出,雖然活化了cGAS-STING pathway,但是因為svPDE的干擾導致免疫反應無法正常運作。在我的研究中,確認svPDE會水解2’, 3’-cGAMP,模擬出來的對接結果顯示Tyr456在GMP位置可能起到很重要的作用。我認為若是svPDE能夠水解2’, 3’-cGAMP,也許能透過抑制人類先天免疫反應,促進蛇毒在人類免疫系統的擴散。同時利用先前研究出svPDE的小分子抑制劑,觀察是否能抑制svPDE水解2’, 3’-cGAMP。
Snake venom phosphodiesterase (svPDE) from Naja atra revealed that the svPDE evolved from ENPP3 (Pan et al., 2023), but the function of svPDE is not clear. SvPDE is a high molecular weight glycoprotein, generally present in various kinds of snake venom. Sequence alignment showed that svPDE is homologous to human ENPP3, ENPP family can hydrolyze nucleotides and derivatives. Recent research has shown that human ENPP1 can hydrolyze 2’, 3’-cyclic GMP–AMP (cGAMP) (Carozza et al., 2022). 2’, 3’-cGAMP plays an important role as a secondary messenger. The inactive stimulator of interferon genes (STING) is a dimer, upon cGAMP binding, STING molecules become oligomers, activating interferon production (Li et al., 2018). cGAS can sense dsDNA and synthesize 2’, 3’-cGAMP. In my study, we aim to investigate whether svPDE can also hydrolyze 2’, 3’-cGAMP.
In my research, it was confirmed that svPDE can hydrolyze 2’, 3’-cGAMP, and the simulated docking results showed that Tyr456 may play an important role at the GMP position. I think that if svPDE can hydrolyze 2’, 3’-cGAMP, it may be able to promote the spread of snake venom in the human immune system by inhibiting the human innate immune response. At the same time, using the small molecule inhibitors of svPDE previously developed to observe whether it can inhibit the hydrolysis of 2’, 3’-cGAMP by svPDE. According to our results, Quercetin inhibits the hydrolysis of cGAMP by svPDE, which can provide therapeutics for modulating the immune response of the prey upon snakebites.
Ablasser, A., & Chen, Z. J. (2019). cGAS in action: Expanding roles in immunity and inflammation. Science, 363(6431). https://doi.org/10.1126/science.aat8657
Ablasser, A., Goldeck, M., Cavlar, T., Deimling, T., Witte, G., Röhl, I., Hopfner, K.-P., Ludwig, J., & Hornung, V. (2013). cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature, 498(7454), 380-384. https://doi.org/10.1038/nature12306
Ay, M., Charli, A., Jin, H., Anantharam, V., Kanthasamy, A., & Kanthasamy, A. G. (2016). Chapter 32 - Quercetin. In R. C. Gupta (Ed.), Nutraceuticals (pp. 447-452). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802147-7.00032-2
Boots, A. W., Wilms, L. C., Swennen, E. L. R., Kleinjans, J. C. S., Bast, A., & Haenen, G. R. M. M. (2008). In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers [Article]. Nutrition, 24(7-8), 703-710. https://doi.org/10.1016/j.nut.2008.03.023
Borza, R., Salgado-Polo, F., Moolenaar, W. H., & Perrakis, A. (2022). Structure and function of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family: Tidying up diversity. J Biol Chem, 298(2), 101526. https://doi.org/10.1016/j.jbc.2021.101526
Burak, M., & Imen, Y. (1999). Flavonoids and their antioxidant properties. Turkiye Klin Tip Bil Derg, 19(1), 296-304.
Carozza, J. A., Böhnert, V., Nguyen, K. C., Skariah, G., Shaw, K. E., Brown, J. A., Rafat, M., von Eyben, R., Graves, E. E., Glenn, J. S., Smith, M., & Li, L. (2020). Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anticancer immunity. Nature Cancer, 1(2), 184-196. https://doi.org/10.1038/s43018-020-0028-4
Carozza, J. A., Cordova, A. F., Brown, J. A., AlSaif, Y., Böhnert, V., Cao, X., Mardjuki, R. E., Skariah, G., Fernandez, D., & Li, L. (2022). ENPP1’s regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling. Proceedings of the National Academy of Sciences, 119(21), e2119189119. https://doi.org/doi:10.1073/pnas.2119189119
Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food chemistry, 113(4), 859-871.
Chuang, P.-C., Lin, W.-H., Chen, Y.-C., Chien, C.-C., Chiu, I.-M., & Tsai, T.-S. (2022). Oral Bacteria and Their Antibiotic Susceptibilities in Taiwanese Venomous Snakes. Microorganisms, 10(5), 951. https://www.mdpi.com/2076-2607/10/5/951
de Silva, H., Ryan, N., & deSilva, H. (2015). Adverse reactions to snake antivenom, and their prevention and treatment. British journal of clinical pharmacology, 81. https://doi.org/10.1111/bcp.12739
Decout, A., Katz, J. D., Venkatraman, S., & Ablasser, A. (2021). The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol, 21(9), 548-569. https://doi.org/10.1038/s41577-021-00524-z
Dhananjaya, B. L., & D'Souza, C. J. M. (2010). The pharmacological role of nucleotidases in snake venoms. Cell Biochemistry and Function, 28(3), 171-177. https://doi.org/https://doi.org/10.1002/cbf.1637
Diner, E. J., Burdette, D. L., Wilson, S. C., Monroe, K. M., Kellenberger, C. A., Hyodo, M., Hayakawa, Y., Hammond, M. C., & Vance, R. E. (2013). The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep, 3(5), 1355-1361. https://doi.org/10.1016/j.celrep.2013.05.009
Dobbs, N., Burnaevskiy, N., Chen, D., Gonugunta, Vijay K., Alto, Neal M., & Yan, N. (2015). STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host & Microbe, 18(2), 157-168. https://doi.org/https://doi.org/10.1016/j.chom.2015.07.001
Ergun, S. L., Fernandez, D., Weiss, T. M., & Li, L. (2019). STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition. Cell, 178(2), 290-301.e210. https://doi.org/10.1016/j.cell.2019.05.036
Estevão-Costa, M.-I., Sanz-Soler, R., Johanningmeier, B., & Eble, J. A. (2018). Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. The international journal of biochemistry & cell biology, 104, 94-113. https://doi.org/10.1016/j.biocel.2018.09.011
Gao, L., Yao, R., Liu, Y., Wang, Z., Huang, Z., Du, B., Zhang, D., Wu, L., Xiao, L., & Zhang, Y. (2017). Isorhamnetin protects against cardiac hypertrophy through blocking PI3K–AKT pathway. Molecular and Cellular Biochemistry, 429(1), 167-177. https://doi.org/10.1007/s11010-017-2944-x
Gong, G., Guan, Y.-Y., Zhang, Z.-L., Rahman, K., Wang, S.-J., Zhou, S., Luan, X., & Zhang, H. (2020). Isorhamnetin: A review of pharmacological effects. Biomedicine & Pharmacotherapy, 128, 110301. https://doi.org/https://doi.org/10.1016/j.biopha.2020.110301
Gorelik, A., Randriamihaja, A., Illes, K., & Nagar, B. (2018). Structural basis for nucleotide recognition by the ectoenzyme CD203c. The FEBS Journal, 285(13), 2481-2494. https://doi.org/https://doi.org/10.1111/febs.14489
Gutiérrez, J. M., Calvete, J. J., Habib, A. G., Harrison, R. A., Williams, D. J., & Warrell, D. A. (2017a). Correction: Snakebite envenoming. Nature Reviews Disease Primers, 3(1), 17079. https://doi.org/10.1038/nrdp.2017.79
Gutiérrez, J. M., Calvete, J. J., Habib, A. G., Harrison, R. A., Williams, D. J., & Warrell, D. A. (2017b). Snakebite envenoming. Nature Reviews Disease Primers, 3(1), 17063. https://doi.org/10.1038/nrdp.2017.63
He, X. Z., Wang, X., & Dixon, R. A. (2006). Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (Iso)flavonoid glycosylation [Article]. Journal of Biological Chemistry, 281(45), 34441-34447. https://doi.org/10.1074/jbc.M605767200
Hu, S., Huang, L., Meng, L., Sun, H., Zhang, W., & Xu, Y. (2015). Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways. Mol Med Rep, 12(5), 6745-6751. https://doi.org/10.3892/mmr.2015.4269
Idzko, M., Ferrari, D., & Eltzschig, H. K. (2014). Nucleotide signalling during inflammation. Nature, 509(7500), 310-317. https://doi.org/10.1038/nature13085
Idzko, M., Hammad, H., van Nimwegen, M., Kool, M., Willart, M. A. M., Muskens, F., Hoogsteden, H. C., Luttmann, W., Ferrari, D., Di Virgilio, F., Virchow, J. C., & Lambrecht, B. N. (2007). Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Medicine, 13(8), 913-919. https://doi.org/10.1038/nm1617
Jansen, S., Perrakis, A., Ulens, C., Winkler, C., Andries, M., Joosten, R. P., Van Acker, M., Luyten, F. P., Moolenaar, W. H., & Bollen, M. (2012). Structure of NPP1, an ectonucleotide pyrophosphatase/phosphodiesterase involved in tissue calcification [Article]. Structure, 20(11), 1948-1959. https://doi.org/10.1016/j.str.2012.09.001
Kato, K., Nishimasu, H., Okudaira, S., Mihara, E., Ishitani, R., Takagi, J., Aoki, J., & Nureki, O. (2012). Crystal structure of Enpp1, an extracellular glycoprotein involved in bone mineralization and insulin signaling. Proceedings of the National Academy of Sciences, 109(42), 16876-16881. https://doi.org/doi:10.1073/pnas.1208017109
Kawane, K., Ohtani, M., Miwa, K., Kizawa, T., Kanbara, Y., Yoshioka, Y., Yoshikawa, H., & Nagata, S. (2006). Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature, 443(7114), 998-1002. https://doi.org/10.1038/nature05245
Kazandjian, T. D., Petras, D., Robinson, S. D., van Thiel, J., Greene, H. W., Arbuckle, K., Barlow, A., Carter, D. A., Wouters, R. M., Whiteley, G., Wagstaff, S. C., Arias, A. S., Albulescu, L.-O., Plettenberg Laing, A., Hall, C., Heap, A., Penrhyn-Lowe, S., McCabe, C. V., Ainsworth, S., . . . Casewell, N. R. (2021). Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science, 371(6527), 386-390. https://doi.org/doi:10.1126/science.abb9303
Korekane, H., Park, J. Y., Matsumoto, A., Nakajima, K., Takamatsu, S., Ohtsubo, K., Miyamoto, Y., Hanashima, S., Kanekiyo, K., Kitazume, S., Yamaguchi, Y., Matsuo, I., & Taniguchi, N. (2013). Identification of ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3) as a regulator of N-acetylglucosaminyltransferase GnT-IX (GnT-Vb). J Biol Chem, 288(39), 27912-27926. https://doi.org/10.1074/jbc.M113.474304
Krishnankutty, S. P., Muraleedharan, M., Perumal, R. C., Michael, S., Benny, J., Balan, B., Kumar, P., Manazhi, J., Kumar, B. D., Santhosh, S., Thomas, G., Gupta, R., & Zachariah, A. (2018). Next-generation sequencing analysis reveals high bacterial diversity in wild venomous and non-venomous snakes from India. Journal of Venomous Animals and Toxins including Tropical Diseases, 24(1), 41. https://doi.org/10.1186/s40409-018-0181-8
Laustsen, A. H., Gutiérrez, J. M., Lohse, B., Rasmussen, A. R., Fernández, J., Milbo, C., & Lomonte, B. (2015). Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon, 99, 23-35. https://doi.org/https://doi.org/10.1016/j.toxicon.2015.03.001
Laustsen, A. H., María Gutiérrez, J., Knudsen, C., Johansen, K. H., Bermúdez-Méndez, E., Cerni, F. A., Jürgensen, J. A., Ledsgaard, L., Martos-Esteban, A., Øhlenschlæger, M., Pus, U., Andersen, M. R., Lomonte, B., Engmark, M., & Pucca, M. B. (2018). Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon, 146, 151-175. https://doi.org/https://doi.org/10.1016/j.toxicon.2018.03.004
Ledderose, C., & Junger, W. G. (2020). Mitochondria Synergize With P2 Receptors to Regulate Human T Cell Function. Front Immunol, 11, 549889. https://doi.org/10.3389/fimmu.2020.549889
Li, J., Duran, M. A., Dhanota, N., Chatila, W. K., Bettigole, S. E., Kwon, J., Sriram, R. K., Humphries, M. P., Salto-Tellez, M., James, J. A., Hanna, M. G., Melms, J. C., Vallabhaneni, S., Litchfield, K., Usaite, I., Biswas, D., Bareja, R., Li, H. W., Martin, M. L., . . . Bakhoum, S. F. (2021). Metastasis and Immune Evasion from Extracellular cGAMP Hydrolysis. Cancer Discovery, 11(5), 1212-1227. https://doi.org/10.1158/2159-8290.Cd-20-0387
Li, T., Chen, Z. A.-O., Ritchie, C., Carozza, J. A., & Li, L. (2018). The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer
Biochemistry, Cell Biology, and Pathophysiology of the Innate Immune cGAS-cGAMP-STING Pathway. (1540-9538 (Electronic)).
Li, W.-Q., Li, J., Liu, W.-X., Wu, L.-J., Qin, J.-Y., Lin, Z.-W., Liu, X.-Y., Luo, S.-Y., Wu, Q.-H., Xie, X.-F., & Peng, C. (2022). Isorhamnetin: A Novel Natural Product Beneficial for Cardiovascular Disease. Current Pharmaceutical Design, 28(31), 2569-2582. https://doi.org/http://dx.doi.org/10.2174/1381612828666220829113132
Liu, C.-C., Chou, Y.-S., Chen, C.-Y., Liu, K.-L., Huang, G.-J., Yu, J.-S., Wu, C.-J., Liaw, G.-W., Hsieh, C.-H., & Chen, C.-K. (2020). Pathogenesis of local necrosis induced by Naja atra venom: Assessment of the neutralization ability of Taiwanese freeze-dried neurotoxic antivenom in animal models. PLOS Neglected Tropical Diseases, 14(2), e0008054. https://doi.org/10.1371/journal.pntd.0008054
Liu, N., Pang, X., Zhang, H., & Ji, P. (2021). The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Front Immunol, 12, 814709. https://doi.org/10.3389/fimmu.2021.814709
Méndez, R., Bonilla, F., Sasa, M., Dwyer, Q., Fernández, J., & Lomonte, B. (2019). Proteomic profiling, functional characterization, and immunoneutralization of the venom of Porthidium porrasi, a pitviper endemic to Costa Rica. Acta Tropica, 193, 113-123. https://doi.org/https://doi.org/10.1016/j.actatropica.2019.02.030
Mao, Y. C., Chuang, H. N., Shih, C. H., Hsieh, H. H., Jiang, Y. H., Chiang, L. C., Lin, W. L., Hsiao, T. H., & Liu, P. Y. (2021). An investigation of conventional microbial culture for the Naja atra bite wound, and the comparison between culture-based 16S Sanger sequencing and 16S metagenomics of the snake oropharyngeal bacterial microbiota. PLoS Negl Trop Dis, 15(4), e0009331. https://doi.org/10.1371/journal.pntd.0009331
Martinez, J., Almendinger, J., Oberst, A., Ness, R., Dillon, C. P., Fitzgerald, P., Hengartner, M. O., & Green, D. R. (2011). Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proceedings of the National Academy of Sciences, 108(42), 17396-17401. https://doi.org/doi:10.1073/pnas.1113421108
Mercurio, S. A., Chunn, L. M., Khursigara, G., Nester, C., Wray, K., Botschen, U., Kiel, M. J., Rutsch, F., & Ferreira, C. R. (2022). ENPP1 deficiency: A clinical update on the relevance of individual variants using a locus-specific patient database. Human Mutation, 43(12), 1673-1705. https://doi.org/https://doi.org/10.1002/humu.24477
Michaelis, L., Menten Ml Fau - Johnson, K. A., Johnson Ka Fau - Goody, R. S., & Goody, R. S. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. (1520-4995 (Electronic)).
Munawar, A., Ali, S. A., Akrem, A., & Betzel, C. (2018). Snake Venom Peptides: Tools of Biodiscovery. Toxins (Basel), 10(11). https://doi.org/10.3390/toxins10110474
Nakahira, K., Hisata, S., & Choi, A. M. (2015). The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal, 23(17), 1329-1350. https://doi.org/10.1089/ars.2015.6407
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
Oliveira, I. S. d., Pucca, M. B., Wiezel, G. A., Cardoso, I. A., Bordon, K. d. C. F., Sartim, M. A., Kalogeropoulos, K., Ahmadi, S., Baiwir, D., Nonato, M. C., Sampaio, S. V., Laustsen, A. H., auf dem Keller, U., Quinton, L., & Arantes, E. C. (2021). Unraveling the structure and function of CdcPDE: A novel phosphodiesterase from Crotalus durissus collilineatus snake venom. International Journal of Biological Macromolecules, 178, 180-192. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.02.120
Pan, C.-T., Lin, C.-C., Lin, I. J., Chien, K.-Y., Lin, Y.-S., Chang, H.-H., & Wu, W.-G. (2023). The evolution and structure of snake venom phosphodiesterase (svPDE) highlight its importance in venom actions. eLife, 12, e83966. https://doi.org/10.7554/eLife.83966
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. J Nutr Sci, 5, e47. https://doi.org/10.1017/jns.2016.41
Peng, C., Wu, D.-D., Ren, J.-L., Peng, Z.-L., Ma, Z., Wu, W., Lv, Y., Wang, Z., Deng, C., Jiang, K., Parkinson, C. L., Qi, Y., Zhang, Z.-Y., & Li, J.-T. (2023). Large-scale snake genome analyses provide insights into vertebrate development. Cell, 186(14), 2959-2976.e2922. https://doi.org/https://doi.org/10.1016/j.cell.2023.05.030
Preciado, L. M., Comer, J., Núñez, V., Rey-Súarez, P., & Pereañez, J. A. (2018). Inhibition of a Snake Venom Metalloproteinase by the Flavonoid Myricetin. Molecules, 23(10), 2662. https://www.mdpi.com/1420-3049/23/10/2662
Résière, D., Olive, C., Kallel, H., Cabié, A., Névière, R., Mégarbane, B., Gutiérrez, J. M., & Mehdaoui, H. (2018). Oral Microbiota of the Snake Bothrops lanceolatus in Martinique. Int J Environ Res Public Health, 15(10). https://doi.org/10.3390/ijerph15102122
Raghavan, S., & Jayaraman, G. (2021). Synergistic effect of flavonoids combined with antivenom on neutralisation of <i>Naja naja</i> venom [Original Article]. Asian Pacific Journal of Tropical Biomedicine, 11(7), 298-307. https://doi.org/10.4103/2221-1691.309665
Ritchie, C., Carozza, J. A., & Li, L. (2022). Biochemistry, Cell Biology, and Pathophysiology of the Innate Immune cGAS–cGAMP–STING Pathway. Annual Review of Biochemistry, 91(1), 599-628. https://doi.org/10.1146/annurev-biochem-040320-101629
Robinson, P. K. (2015). Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59, 1-41. https://doi.org/10.1042/bse0590001
Shek, K. C., Tsui, K. L., Lam, K. K., Crow, P., Ng, K. H., Ades, G., Yip, K. T., Grioni, A., Tan, K. S., Lung, D. C., Lam, T. S., Fung, H. T., Que, T. L., & Kam, C. W. (2009). Oral bacterial flora of the Chinese cobra (Naja atra) and bamboo pit viper (Trimeresurus albolabris) in Hong Kong SAR, China. Hong Kong Med J, 15(3), 183-190.
Staff, H. (2022). Snake Antivenom https://myhealth.alberta.ca/Health/pages/conditions.aspx?hwid=tm6541
Tan, C. H., Tan, K. Y., Fung, S. Y., & Tan, N. H. (2015). Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genomics, 16(1), 687. https://doi.org/10.1186/s12864-015-1828-2
Tasoulis, T., & Isbister, G. K. (2017). A Review and Database of Snake Venom Proteomes. Toxins, 9(9), 290. https://www.mdpi.com/2072-6651/9/9/290
Terkeltaub, R. (2006). Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signalling, 2(2), 371-377. https://doi.org/10.1007/s11302-005-5304-3
Torres, A. M., Ojeda, G. A., Angelina, E., Bustillo, S., Peruchena, N., Tonidandel, L., Larcher, R., Nardin, T., & Dellacassa, E. (2023). The anti-snake activity of Nectandra angustifolia flavonoids on phospholipase A2: In vitro and in silico evaluation. Journal of Ethnopharmacology, 302, 115889. https://doi.org/https://doi.org/10.1016/j.jep.2022.115889
Tsai, S. H., Kinoshita, M., Kusu, T., Kayama, H., Okumura, R., Ikeda, K., Shimada, Y., Takeda, A., Yoshikawa, S., Obata-Ninomiya, K., Kurashima, Y., Sato, S., Umemoto, E., Kiyono, H., Karasuyama, H., & Takeda, K. (2015). The Ectoenzyme E-NPP3 Negatively Regulates ATP-Dependent Chronic Allergic Responses by Basophils and Mast Cells. Immunity, 42(2), 279-293. https://doi.org/https://doi.org/10.1016/j.immuni.2015.01.015
Tsai, S. H., & Takeda, K. (2016). Regulation of allergic inflammation by the ectoenzyme E-NPP3 (CD203c) on basophils and mast cells. Semin Immunopathol, 38(5), 571-579. https://doi.org/10.1007/s00281-016-0564-2
Uzair, B., Khan, B. A., Sharif, N., Shabbir, F., & Menaa, F. (2018). Phosphodiesterases (PDEs) from Snake Venoms: Therapeutic Applications. (1875-5305 (Electronic)).
Wagener, M., Naidoo, M., & Aldous, C. (2017). Wound infection secondary to snakebite. S Afr Med J, 107(4), 315-319. https://doi.org/10.7196/SAMJ.2017.v107i4.12084
Wang, C.-H., & Wu, W.-g. (2005). Amphiphilic β-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Letters, 579(14), 3169-3174. https://doi.org/https://doi.org/10.1016/j.febslet.2005.05.006
Wang, X., Lu, X., Yan, D., Zhou, Y., & Tan, X. (2022). Development of Novel Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) Inhibitors for Tumor Immunotherapy. Int J Mol Sci, 23(13). https://doi.org/10.3390/ijms23137104
Williams, C. A., & Grayer, R. J. (2004). Anthocyanins and other flavonoids [Review]. Natural Product Reports, 21(4), 539-573. https://doi.org/10.1039/b311404j
Williams, D. J., Faiz, M. A., Abela-Ridder, B., Ainsworth, S., Bulfone, T. C., Nickerson, A. D., Habib, A. G., Junghanss, T., Fan, H. W., Turner, M., Harrison, R. A., & Warrell, D. A. (2019). Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl Trop Dis, 13(2), e0007059. https://doi.org/10.1371/journal.pntd.0007059
Wong, K. Y., Tan, K. Y., Tan, N. H., & Tan, C. H. (2021). A Neurotoxic Snake Venom without Phospholipase A(2): Proteomics and Cross-Neutralization of the Venom from Senegalese Cobra, Naja senegalensis (Subgenus: Uraeus). Toxins (Basel), 13(1). https://doi.org/10.3390/toxins13010060
Xu, S. L., Choi, R. C. Y., Zhu, K. Y., Leung, K.-W., Guo, A. J. Y., Bi, D., Xu, H., Lau, D. T. W., Dong, T. T. X., & Tsim, K. W. K. (2012). Isorhamnetin, A Flavonol Aglycone from <i>Ginkgo biloba</i> L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor. Evidence-Based Complementary and Alternative Medicine, 2012, 278273. https://doi.org/10.1155/2012/278273
Yang, J., Li, J. C., Huang, Z., Huang, D. L., Wang, F., Wei, W. X., Nong, J. F., Yang, F., Lu, X. L., Zhu, J. R., & Wang, W. (2023). Effect of Several Naja atra Antivenom Injection Methods on the Rabbit Model of Naja naja atra Bite Poisoning. J Trop Med, 2023, 3253771. https://doi.org/10.1155/2023/3253771
Zandi, K., Teoh, B. T., Sam, S. S., Wong, P. F., Mustafa, M., & Abubakar, S. (2011). Antiviral activity of four types of bioflavonoid against dengue virus type-2 [Article]. Virology Journal, 8, Article 560. https://doi.org/10.1186/1743-422X-8-560
Zhang, X., Shi, H., Wu, J., Zhang, X., Sun, L., Chen, C., & Chen, Z. J. (2013). Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell, 51(2), 226-235. https://doi.org/10.1016/j.molcel.2013.05.022
John Dawson. BIOC*2580: Introduction to Biochemistry Copyright © (2021) by John Dawson. All Rights Reserved
Michaelis, L., Menten, M. L., Johnson, K. A., & Goody, R. S. (2011). The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry, 50(39), 8264–8269. https://doi.org/10.1021/bi201284u
CSID:78317155, http://www.chemspider.com/Chemical-Structure.78317155.html (accessed 14:43, Jul 2, 2023)
National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 5280343, Quercetin. Retrieved July 2, 2023, from https://pubchem.ncbi.nlm.nih.gov/compound/Quercetin.
Healthwise Staff. (June 6, 2022) Snake Antivenom. © 1995-2022 Healthwise, Incorporated. Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Healthwise, Incorporated. https://myhealth.alberta.ca/Health/pages/conditions.aspx?hwid=tm6541.