研究生: |
張玉澔 Chang, Yu-Hao |
---|---|
論文名稱: |
操作在三百五十億赫茲具有三角積分調變器的數位式鎖相迴路 A 35GHz Phase Locked Loop with Delta Sigma Modulator |
指導教授: |
朱大舜
Chu, Ta-Shun |
口試委員: |
吳仁銘
Wu, Jen-Ming 王毓駒 Wang, Yu-Jiu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 鎖相迴路 、分數型 |
外文關鍵詞: | Phase Locked Loops, Fractional-N Phase Locked Loops |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的演進,無線通訊的傳輸速率要求也隨之增加,行動通訊系統也從2G一路演進到目前最新的5G,並隨著近十年來智慧型手機爆發性的成長之賜,人們對於頻寬的需求與時俱進,串流音樂、影音也因為無線網路的發達而崛起,光以影音規格來說,很快地,人們就不會滿足於 Full HD 的解析度,而會想要往 4K、甚至 8K 的解析度邁進,人們對於無線網路的速度需求只會越來越大,因此一旦 5G 逐漸普及,許多需要更快下載速度的服務與應用也會迅速流行。
本論文提出一個應用在5G NR所定義的毫米波頻段射頻收發機的三百五十億赫茲具有三角積分調變器的數位式鎖相迴路,主要組成電路有參考信號預除器、相位頻率檢測器、電流幫浦、晶片內的迴路濾波器、可選頻帶之LC式壓控震盪器、電流模式除頻器、與具有三角積分調變器控制之除頻器,利用運算放大器降低電流幫浦的非理想效應,而在電流幫浦中設計可調整電流,藉此改變迴路頻寬,並在相位頻率檢測器中加入延遲電路,可在Reference Spur最小的情況下解決死區的問題,並用切換式電容層降低單一頻帶壓控振盪器的增益來提升相位雜訊的表現,而論文中三角積分調變器擁有十六位元達到所需除數的高解析度輸出。而因為此次應用,必須要有四組17GHz的I/Q正交訊號,以利用四種不同的相位差,由於晶片面積的考量,不同以往運用注入式鎖定除頻器,本論文將電流模式除頻器直接當作35GHz壓控振盪器的下一級,做後續降頻的動作,由以上子電路建立出完整的鎖相迴路架構。
本論文採用台積電所提供之六十五奈米CMOS製程進行模擬設計,論文開頭為介紹鎖相迴路架中個子電路的核心概念和操作原理,接著依序講解鎖相迴路設計流程、數學模型、提出電路架構之模擬結果、下線晶片的量測考量,最後對於提出之鎖相迴路做統合性的結論。
With the evolution of technology, the transmission rate requirements of wireless communication have also increased. The mobile communication system has also evolved from 2G to the latest 5G. With the explosive growth of smart phones in the past decade, people have been The wide demand keeps pace with the times. Streaming music and audio and video are also rising due to the development of wireless networks. In terms of audio and video specifications, people will not be satisfied with the resolution of Full HD and will want to As the resolution of 4K and even 8K, people's demand for wireless network speed will only increase. As soon as 5G becomes popular, many services and applications that require faster download speeds will quickly become popular.
A 35GHz Phase Locked Loop with Delta Sigma Modulator applied to a millimeter-wave band RF transceiver as defined by 5G NR was proposed in this thesis. The main components of the circuit are a reference pre-divider, phase-frequency detector, charge pump,3^rd loop filter on chip, LC voltage controlled oscillator of selectable frequency band, current mode logic frequency divider, and a divider controlled by delta-sigma modulator. Using operational amplifier to reduce the non-ideal effect of charge pump, while designing the adjustable current in the charge pump, to change the loop bandwidth, and adding a delay circuit to the phase frequency detector, can solve the dead zone with the minimum Reference Spur. I use the switching capacitive layer to reduce the gain of the single-band voltage-controlled oscillator to improve the performance of phase noise. In the thesis, the delta-sigma modulator has 16 bits to achieve the high resolution output of the required divisor. Because of the application, there must be four groups of 17GHz I/Q quadrature signals to utilize four different phase. Due to the consideration of the chip area, different uses of injection locking frequency dividers in the past. In the thesis, will use CML frequency divider to be the next stage of the 35GHz voltage controlled oscillator to reduce frequency successfully. The entire architecture of proposed PLL was composed by the circuits mentioned above.
The design of this thesis uses the 65 nanometer CMOS process was provided by TSMC.The thesis begins with the introduction of the core concepts and operating principles of a sub-circuit in a PLL. and the mathematical model of PLLs, the designed flow, the simulation results of proposed circuits, the considerations of measurement were described step by step. Finally, an integrated conclusion for the proposed PLL was given in the last chapter.
[1] Sengupta, K., & Hashemi, H. (2006, December). Maximum frequency of operation of CMOS static frequency dividers: Theory and design techniques. In Electronics, Circuits and Systems, 2006. ICECS'06. 13th IEEE International Conference on (pp. 584-587). IEEE.
[2] Usama, M., & Kwasniewski, T. A. (2006, June). A 40-GHz frequency divider in 90-nm CMOS technology. In Circuits and Systems, 2006 IEEE North-East Workshop on (pp. 41-43). IEEE.
[3] Nonis, R., Palumbo, E., Palestri, P., & Selmi, L. (2007). A design methodology for MOS current-mode logic frequency dividers. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(2), 245-254.
[4] Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE
journal of solid-state circuits, 39(9), 1415-1424.
[5] Kuo, Y. H., Tsai, J. H., Chou, W. H., & Huang, T. W. (2010, December). Admittance-transforming injection-locked frequency divider and low-supply-voltage current mode logic divider. In Microwave Conference Proceedings (APMC), 2010 Asia-Pacific (pp. 782-785). IEEE.
[6] Imani, A., & Hashemi, H. (2017). Distributed Injection-Locked Frequency Dividers. IEEE Journal of Solid-State Circuits, 52(8), 2083-2093.
[7] Rategh, H. R., & Lee, T. H. (1999). Superharmonic injection-locked frequency dividers. IEEE Journal of Solid-State Circuits, 34(6), 813-821.
[8] Lee, J., Li, Y. A., Hung, M. H., & Huang, S. J. (2010). A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE Journal of Solid-State Circuits, 45(12), 2746-2756.
[9] Siriburanon, T., Kondo, S., Katsuragi, M., Liu, H., Kimura, K., Deng, W., ... & Matsuzawa, A. (2016). A low-power low-noise mm-wave subsampling PLL using dual-step-mixing ILFD and tail-coupling quadrature injection-locked oscillator for IEEE 802.11 ad. IEEE Journal of Solid-State Circuits, 51(5), 1246-1260.
[10] Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE journal of solid-state circuits, 39(9), 1415-1424.
[11] Lee, J., & Wang, H. (2009). Study of subharmonically injection-locked PLLs. IEEE Journal of Solid-State Circuits, 44(5), 1539-1553.
[12] 蕭介勛. (2008). 本地振盪源的注入鎖定與牽引現象研究 (Doctoral dissertation, 撰者).
[13] 許敦智, et al. 0.18 μm 互補式金氧半導體高頻壓控振盪器與鎖相迴路設計. 2005. PhD Thesis.
[14] 奚國綱. (2015). 一個寬頻鎖相迴路具有全域操作的高線性度壓控振盪器. 中央大學電機工程研究所碩士在職專班學位論文, 1-110.
[15] 邱顯鴻, et al. 低電壓互補式金氧半導體高頻壓控振盪器與鎖相迴路設計. 2006. PhD Thesis.
[16] 陳韋存.(2017).一個操作在2.8-4.8GHz的三角積分鎖相迴路.清華大學電機工程學系研究所論文.
[17] 高曜煌,《射頻鎖相迴路 IC 設計》。滄海書局,2017
[18] 劉深淵,楊清淵,《鎖相迴路》。滄海書局,2017