簡易檢索 / 詳目顯示

研究生: 施宏燕
Shih, Hong-Yan
論文名稱: Scaling Ansatz in Renormalization Group Transformations
指導教授: 林秀豪
Lin, Hsiu-Hau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 64
中文關鍵詞: 重整化群準一維強關聯相變相關耦合尺度超導鐵基高溫超導聲子
外文關鍵詞: renormalization group, quasi-one dimensional, strong correlated, phase transition, relevant coupling, scaling, superconductivity, iron based, high temperature superconductor, phonon
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The phase diagram for the interacting fermions in weak coupling is described by the perturbative renormalization group (RG) equations. However, these non-linear differential equations are not analytical, and the relevancy of couplings is difficult to tell in the numerical results. The scaling Ansatz we propose here is a breakthrough not only to predict the scale of the energy gap but also to classify the relevant couplings by building up a hierarchy of them. Applying the scheme to the two-leg ladder, we solve the long-standing phase problem and show that the mismatch of velocity leads no quantum phase transition. Further we investigate the influence of electron-phonon interactions in the fermionic ladders and find that the scaling Ansatz predicts a new type of superconductivity, Coulomb superconductors, emerging from repulsive interactions in the electron pair. In iron-pnictides superconductors, the inter-electron couplings are dominant and drive the electron-phonon couplings to become relevant, which is called the dressed Coulomb type. The scaling Ansatz also explains the anomalous isotope effect in experiments and predicts an extended s-wave pairing in spin gaps.


    1 Introduction 2 The Scaling Ansatz 3 RG Analysis and Phase Transition in Quasi-one Dimension 3.1 Ladder system Hamiltonian 3.2 Renormalization group recipe and one-loop analysis 3.3 Bosonization strategy 3.4 Scaling analysis and quantum phase transition in the two-leg ladder 4 Coulomb Superconductivity in Iron-pnictides 4.1 Ladder model for iron-pnictides 4.2 Electron-phonon interaction in full RG scheme analysis 4.3 Dressed Coulomb phase and anomalous isotope e ect 4.4 Operator tendency method for superconductivity ordering 5 SU(4) Ladder Model for Iron-pnictides Superconductors 5.1 Four-chain model with SU(2)*(Z2*Z2)^2 and SU(4) symmetry 5.2 Bosonization strategy 5.3 Klein factors 5.4 Discussion 6 Conclusion and Outlook Appendix SU(N) RG equations dictionary

    [1] K. G. Wilson, Rev. Mod. Phys. 55, 583 (1983).
    [2] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
    [3] M. E. Fisher, Rev. Mod. Phys. 70, 653 (1998).
    [4] N. Goldenfeld, Lectures on Phase Transitions and the Renormalization
    Group (Addison Wesley, 1992).
    [5] I. L. Aleiner and K. B. Efetov, Phys. Rev. Lett. 97, 236801 (2006).
    [6] Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi and S.-C. Zhang, Phys. Rev. Lett. 102,
    156603 (2009).
    [7] L. Mathey, S.-W. Tsai and A. H. Castro Neto, Phys. Rev. Lett. 97, 030601
    (2006).
    [8] K. B. Gubbels and H. T. C. Stoof, Phys. Rev. Lett. 100, 140407 (2008).
    [9] F. Wang, H. Zhai, Y. Ran, A. Vishwanath and D.-H. Lee, Phys. Rev. Lett.
    102, 047005 (2009).
    [10] T. T. Ong and B. A. Jones Phys. Rev. Lett. 103, 066405 (2009).
    [11] M. Fabrizio, Phys. Rev. B 48, 15 838 (1993).
    [12] L. Balents and M. P. A. Fisher, Phys. Rev. B 53, 12133 (1996).
    [13] H. J. Schulz, Phys. Rev. B 53, R2959 (1996).
    [14] E. Arrigoni, Phys. Stat. Sol. (b) 195, 425 (1996).
    [15] H.-H. Lin, L. Balents and M. P. A. Fisher, Phys. Rev. B 56, 6569 (1997).
    [16] H.-H. Lin, L. Balents and M. P. A. Fisher, Phys. Rev. B 58, 1794 (1998).
    [17] E. Szirmai and J. Solyom, Phys. Rev. B 74, 155110 (2006).
    [18] J. E. Bunder and H. H. Lin, Phys. Rev. B 78, 035401 (2008).
    [19] L. Balents and M. P. A. Fisher, Phys. Rev. B 55, R11973 (1997).
    [20] Y. A. Krotov, D.-H. Lee and S. G. Louie, Phys. Rev. Lett. 78, 4245 (1997).
    [21] H.-H. Lin, Phys. Rev. B 58, 4963 (1998).
    [22] A. A. Odintsov and H. Yoshioka, Phys. Rev. B 59, 10457(R) (1999).
    [23] A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. B 68, 235419 (2003).
    [24] V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J. Hone, M.
    Bockrath, Science 323, 106 (2009).
    [25] H. J. Bornemann and D. E. Morris, Phys. Rev. B 44, 5322 (1991).
    [26] G. H. Gweon et al., Nature 430, 187 (2004).
    [27] R. H. Liu et al., Nature 459, 64 (2009).
    [28] P. M. Shirage et al., Phys. Rev. Lett. 103, 257003 (2009).
    [29] H. Ding et al., EPL 83, 47001 (2008).
    [30] M. Salmhofer and C. Honerkamp, Progress of Theoretical Physics 105, 1
    (2001).
    [31] M.-H. Chang, W. Chen and H.-H. Lin, Prog. Theor. Phys. Suppl. 160, 79
    (2005).
    [32] D. G. Shelton, A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. B 53, 8521
    (1996).
    [33] M. Tsuchiizu and A. Furusaki, Phys. Rev. B 66, 245106 (2002).
    [34] U. Ledermann, K. Le Hur, and T. M. Rice, Phys. Rev. B 62, 16383 (2000).
    [35] R. M. Noack, S. R. White and D. J. Scalapino, Physica C 270, 281 (1996).
    [36] S. Daul and R. M. Noack, Phys. Rev. B 58, 2635 (1998).
    [37] Eq. (2.24) in M. Tsuchiizu, Phys. Rev. B 74, 155109 (2006).
    [38] M. H. Chang, W. Chen and H. H. Lin, Prog. Theor. Phys. Suppl. 160, 79
    (2005).
    [39] K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki,
    Phys. Rev. Lett. 101, 087004 (2008).
    [40] E. Berg, S. A. Kivelson, and D. J. Scalapino, Phys. Rev. B. 81, 172504
    (2010).
    [41] H. Zhai, f. Wang, and D.-H. Lee, Phys. Rev. B 80, 063517 (2009).
    [42] R. Thomale, C. Platt, J. Hu, C. Honerkamp, and B. A. Bernevig, Phys. Rev.
    B 80, 180505(R) (2009).
    [43] H.-Y. Shih, W.-M. Huang, S.-B. Hsu and H.-H. Lin, Phys. Rev. B 81,
    121107R (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE