研究生: |
陳俊元 Chen, Chun-Yuan |
---|---|
論文名稱: |
數據增強和機器學習方法用於改善動態壓降預測 Data Augmentation and Machine Learning Methods for Improving Dynamic IR-Drop Prediction |
指導教授: |
張世杰
Chang, Shih-Chieh |
口試委員: |
陳勇志
Chen, Yung-Chih 陳添福 Chen, Tien-Fu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 23 |
中文關鍵詞: | 機器學習 、動態壓降 |
外文關鍵詞: | Machine Learning, Dynamic IR-drop |
相關次數: | 點閱:73 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於向量電路壓降(vectored IR-drop)分析在晶片簽收(sign off)階段是其中一個重要的步驟用來確保功率(power)在電源分布網路(power distribution network)的完整性,然而動態(dynamic) IR-drop的分析是一個非常耗時的過程,本文利用機器學習來建立一個predictor,用來預測電路上的元件(standard cells)
本文中我們利用機器學習計算IR-drop提出兩個創新的想法。第一,由於 IR-drop 本身是一個極端不平衡的資料集,因此提出一個新的兩階段模型(two-stage model)來改善那些高IR-drop 元件的表現。在此架構下我們達到了20%的改善。第二,由於我們的架構中與分類的表現有關,我們使用了Remix這個原先用來改善不平衡圖像分類的技巧到扁平數據(tabular data)上以提升模型的表現。經過實驗證明,兩階段模型可令高IR的單元表現上升20%,再加上Remix更可以提升80%以上,同時可輕易的應用到其他IR-drop的情景。
Vectored IR-drop analysis is a crucial component of the chip signoff phase, as it is indispensable for ensuring power integrity within the power distribution network. Yet, dynamic IR-drop analysis is highly time-consuming. In this thesis, we utilize machine learning to devise a predictor that forecasts the IR-drop for all standard cells in the circuit. Furthermore, we introduce two novel concepts regarding IR-drop estimation through machine learning.
Firstly, to counter the severe imbalance in the IR-drop dataset, we suggest a unique two-stage model aimed at enhancing the performance of cells with high IR-drop. This approach has achieved a 20% improvement in performance. Secondly, given that our model's efficacy can be affected by classification, we implement the 'Remix' technique. Originally used to bolster imbalanced image classification, we apply it to tabular data to improve our model's performance. Our experiments reveal that the straightforward two-stage model alone can amplify performance by 20%. When supplemented with the 'Remix' technique, the performance of cells with high IR-drop can improve by over 80%. This method is also versatile, as it can be conveniently applied to other IR-drop scenarios.
[1] Paula Branco, Lu´ıs Torgo, and Rita P Ribeiro. SMOGN: a pre-processing
approach for imbalanced regression. pages 36–50, 2017.
[2] Jia-Xian Chen, Shi-Tang Liu, Yu-Tsung Wu, Mu-Ting Wu, Chieo-Mo Li,
Norman Chang, Ying-Shiun Li, and Wen-Tze Chuang. Vector-based dynamic
ir-drop prediction using machine learning. pages 202–207, 2022.
[3] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
pages 785–794, 2016.
[4] Vidya A Chhabria, Yanqing Zhang, Haoxing Ren, Ben Keller, Brucek
Khailany, and Sachin S Sapatnekar. MAVIREC: Ml-aided vectored ir-drop
estimation and classification. In 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1825–1828. IEEE, 2021.
[5] Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, and Da-Cheng
Juan. Remix: rebalanced mixup. pages 95–110, 2020.
[6] Yen-Chun Fang, Heng-Yi Lin, Min-Yan Sui, Chien-Mo Li, and Eric Jia-Wei
Fang. Machine-learning-based dynamic IR drop prediction for ECO. pages
1–7, 2018.
[7] Anubha Kabra, Ayush Chopra, Nikaash Puri, Pinkesh Badjatiya, Sukriti
Verma, Piyush Gupta, et al. Mixboost: Synthetic oversampling with boosted
22
mixup for handling extreme imbalance. arXiv preprint arXiv:2009.01571,
2020.
[8] Santanu Kundu, Manoranjan Prasad, Sashank Nishad, Sandeep Nachireddy,
and K Harikrishnan. MLIR: Machine learning based ir drop prediction on eco
revised design for faster convergence. pages 68–73, 2022.
[9] Yonghwi Kwon and Youngsoo Shin. Fast Prediction of Dynamic IR-Drop
using Recurrent U-Net Architecture. pages 71–76, 2022.
[10] Chi-Hsien Pao, An-Yu Su, and Yu-Min Lee. XGBIR: An xgboost-based ir
drop predictor for power delivery network. pages 1307–1310, 2020.
[11] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not
all you need. Information Fusion, 81:84–90, 2022.
[12] Zhiyao Xie, Haoxing Ren, Brucek Khailany, Ye Sheng, Santosh Santosh, Jiang
Hu, and Yiran Chen. PowerNet: Transferable dynamic ir drop estimation via
maximum convolutional neural network. pages 13–18, 2020.
[13] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David LopezPaz. mixup: Beyond empirical risk minimization. arXiv preprint
arXiv:1710.09412, 2017