簡易檢索 / 詳目顯示

研究生: 羅冠儒
Kuan-Ju Lo
論文名稱: 鋰原子2S→3S躍遷能階的精密量測
High precision measurement of the 2S→3S transition of atomic lithium
指導教授: 劉怡維
Yi-Wei Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 58
中文關鍵詞: 雙光子光譜同位素位移
外文關鍵詞: two-photon spectroscopy, lithium, isotope shift
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The 2 2S1/2 ! 3 2S1/2 transition of atomic lithium has been measured by highprecision
    laser spectroscopy. A 735 nm Ti:Sapphire laser is used to excite the ground
    state atomic lithium from a weakly collimated atomic beam system. The excitation
    laser is stabilized by frequency lock to a specific comb line. The laser frequency is
    measured simultaneously by optical frequency comb with the accuracy to 10−12 level.
    The induced fluorescence spectrum of 2p-2s decay channel is fitted to the Voigt function
    to determine the transition line center. The SNR of the 6Li F=3/2-3/2 is up
    to 100. The center-of-gravity frequencies of 7Li and 6Li are 815618181.28(10) MHz
    and 815606730.20(6) MHz respectively. The hyperfine structure constants 93.30(10)
    MHz for 7Li and 35.40(10) MHz for 6Li are consistent with the previous data. However,
    the isotope shift is 11451.08(16) MHz and which disagrees with the previous
    measurements [8, 9, 11] and theorical calculation [7].


    1 Introduction 1 2 Theory 3 2.1 Atomic Lithium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Properties of Lithium . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Hyperfine Structure . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 Isotope Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Two-Photon Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Doppler-free Spectroscopy . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Lineshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 AC Stark Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Experiment 14 3.1 Two-photon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 Cavity Enhancement . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.3 Atomic beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.4 Fluorescence detection . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Frequency Comb Laser System . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Frequency Stabilization and Data Acquisition . . . . . . . . . . . . . . 26 4 Results and Discussion 29 4.1 Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 first order Doppler Effect . . . . . . . . . . . . . . . . . . . . . . 29 4.1.2 Second-order Doppler Effect . . . . . . . . . . . . . . . . . . . . 30 4.1.3 AC Stark shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.4 Effect of Misalignment . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4 Comparisons with Previous Experiments . . . . . . . . . . . . . . . . . 37 5 Conclusions 42 A The calculation of the absolute frequency by Mathematica 43 B The program of building the histogram by Mathematica 45 C Root Program for Data Fitting 48 C.0.1 The program for the one spectrum line . . . . . . . . . . . . . . 48 C.0.2 The program for the two spectrum lines . . . . . . . . . . . . . 52

    [1] G. W. F. Drake, W. N‥ortersh‥auser, and Z. Yan, Can. J. Phys. 83, 311 (2005).
    [2] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 61, 022504 (2000).
    [3] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 66, 042504 (2002).
    [4] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 91, 113004 (2003).
    [5] k. Pachucki and J. Komasa, Phys. Rev. A 68, 042507 (2003).
    [6] M. Puchalski, A. M. Moro, and K. Pachucki, Phys. Rev. Lett. 97, 133001 (2006).
    [7] Z.-C. Yan et al., Phys. Rev. Lett. 100, 243002 (2008).
    [8] B. A. Bushaw et al., Phys. Rev. Lett. 91, 043004 (2003).
    [9] G. Ewald et al., Phys. Rev. Lett. 93, 113002 (2004).
    [10] I. Tanahata et al., Phys. Rev. Lett. 55, 2676 (1985).
    [11] R. S′anchez et al., Phys. Rev. Lett. 96, 033002 (2006).
    [12] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
    [13] W. E. Otten, Nuclear Radii and Moments of Unstable Isotopes, 1st ed.
    (Plenum Press, New York, 1987).
    [14] G. Grynberg and C. J. Joachain, Rep. Prog. Phys 40, 791 (1977).
    [15] B. H. Bransden and C. J. Joachain, Physcs of Atoms and Molecules, 2nd ed.
    (Prentice Hall, Londen, 2003)
    [16] Jwo-Shy Chen, The measurement of 3s energy levels of atomic lithium, Master’s
    dissertation, National Tsing Hua University, 2007.
    [17] T. Udem et al., Opt. Lett. 24, 881-883 (1999).
    [18] J. Ye et al., Opt. Lett. 25, 1675-1677 (2000).
    [19] G. D. Stevens et al., Phys. Rev. A 51, 2866 (1995).
    [20] Z. Yan, D. K. McKenzie, and G. W. F. Drake, Phys. Rev. A 54, 1322 (1996).
    [21] L. J. Radziemski, R. Engleman Jr., and J. Brault, Phys. Rev. A 52, 4462 (1995).
    [22] E. Riis et al., Phys. Rev. A 49,207 (1994).
    [23] W. Scherf, O. Khait, H. Jager, and L. Windholz, Z. Phys. D: At., Mol. Clusters.
    36, 31 (1996).
    [24] G. A. Noble, B. E. Schultz, H. Ming, and W. A. van Wijngaarden, Phys. Rev. A
    74, 012502 (2006).
    [25] W. N‥ortersh‥auser, N. Trautmann, K. Wendt, and B. A. Bushaw, Spectrochim.
    Acta B 53, 709 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE