研究生: |
劉子維 Liu, Zhi-Wei |
---|---|
論文名稱: |
晶格隨機漫步模型與蒙地卡羅粒子遷移模擬 Lattice Random Walk Modeling and Monte Carlo Particle Transport Simulation |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
張似瑮
Zhang, Si-Li 林明緯 Lin, Ming-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 晶格隨機漫步 、擴散常數 、粒子遷移 、蒙地卡羅模擬 |
外文關鍵詞: | Lattice random walk, Diffusion constant, Particle transport, Monte Carlo simulation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究深入探討晶格式與連續式隨機漫步模型的特性與異同,及其與核工領域應用廣泛之蒙地卡羅粒子遷移模擬的關係。本研究從簡單的晶格式模型進行數學推導得出粒子分布的解析解,並利用程式實現不同情況下粒子擴散的數值解,二者互相比較提供讀者全新視野剖析粒子在空間移動行為的特性,並試圖探索晶格式隨機漫步與真實粒子於空間中遷移行為的關聯性。
由一維空間至三維空間,本研究完成數個不同情節下(不同射源、截面資料、邊界條件等等)的模擬,利用Python程式語言建立晶格式與連續式的單能量群粒子遷移模型,同時推導不同情節下相對應粒子分布的解析解,以作為數值模擬之比較驗證。研究結果顯示兩粒子遷移模型在各個模擬情節下,皆與其理論預測之分佈符合,且用於描述兩種粒子移動模型(晶格式與連續式)的理論型式完全相同,僅需依據粒子遷移維度使用合適的擴散常數型式即可。模擬結果也發現用於描述粒子系統擴散行為的擴散常數於兩模型中有關聯但也有差異,連續式模型的擴散常數正好為晶格式模型的兩倍,且該差異源自於兩種粒子遷移模型針對「移動距離」的取樣方式不同,而非源自於「移動方向」的取樣方式不同。彙整一系列不同問題下針對晶格式與連續式隨機漫步模型的比較,本研究利用理論推導與數值模擬確認二者的類似性與差異性,研究成果可協助連結並解讀簡單晶格式模擬結果的意義,及其與較貼近真實粒子遷移之連續式模型的關係。
In this study, the properties and differences between lattice and continuous random walk model, and their application on Monte Carlo particle transport simulation applying on nuclear engineering are both discussed in detail. Comparing detailed derivation of theoretical particle distribution using lattice random walk with simulation result under several scenarios, this research provides a new perspective to understand particle transportation, trying to find out the relation between lattice random walk and the actual particle transport behavior.
Under different transport condition for one-velocity particle system, such as different space dimension, cross section data of medium, form of particle source, boundary conditions, etc., we constructed lattice and continuous random walk model respectively in each different cases using Python programming language. From one to three dimension, the results shown that two models, given suitable diffusion coefficient, both give us the particle distribution which matches with the analytical solution deduced for each cases. From the simulation results, we found the diffusion coefficient under continuous model would be exactly twice as large as the one under lattice model. Surprisingly, the simulation result shown that this difference is caused by the way we sample the particles’ “moving path length”, instead of the way we sample the particles’ “moving direction.” With organized comparisons, the resemblance and difference between these two models are manifested with the help of mathematical derivation and numerical simulation in our study, giving a deeper understanding about the transport simulation under lattice random walk and its connection to particle transport in real life.
[1] Pearson, K., The Problem of the Random Walk. Nature, 1905. 72(1865): p. 294-294.
[2] Einstein, A., A new determination of molecular dimensions. Ann. Phys., 1906. 19: p. 289-306.
[3] Codling, E.A., M.J. Plank, and S. Benhamou, Random walk models in biology. Journal of the Royal society interface, 2008. 5(25): p. 813-834.
[4] Shultis, J.K. and R.E. Faw, An MCNP primer. 2011.
[5] Islam, A.F., Modeling Neutron Interaction Inside a 2D Reactor Using Monte Carlo Method. 2019, University of South Carolina.
[6] Borwein, J.M., A. Straub, and J. Wan, Three-step and four-step random walk integrals. Experimental Mathematics, 2013. 22(1): p. 1-14.
[7] Borwein, J. M., Straub, A., Wan, J., Zudilin, W., & Zagier, D., Densities of short uniform random walks. Canadian Journal of Mathematics, 2012. 64(5), p. 961-990.
[8] Duderstadt, J.J. and L.J. Hamilton, Nuclear reactor analysis. Wiley, 1976.
[9] Montroll, E.W., On the wonderful world of random walks.
[10] Cáceres, M.O. and H. Wio, Random walk approach for neutron diffusion with strong absorption. Nuclear Instruments and Methods in Physics Research, 1984. 219(2): p. 441-442.
[11] Karmeshu and L. Kothari, Neutron diffusion as a random walk problem. American Journal of Physics, 1972. 40(9): p. 1264-1269.
[12] Matsumoto, M. and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 1998. 8(1), p. 3-30.
[13] Was, G. S., Fundamentals of radiation materials science: metals and alloys. springer, 2016.
[14] Kittel, C., & Kroemer, H., Thermal physics, 1998.