研究生: |
丁奕碩 Ting, Yi-Shuo |
---|---|
論文名稱: |
整合液晶與微菱鏡陣列於LED光形調變之應用 Integration of Liquid Crystal and Microprism Arrays for LED Radiant Pattern Application |
指導教授: |
方維倫
Fang, Weileun 陳榮順 Chen, Rongshun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 高分子分散液晶 、微菱鏡陣列 、可調控光形 、微加工 |
外文關鍵詞: | Polymer-Dispersed Liquid Crystal (PDLC), Microprism array, Tunable radiation pattern, Micromachining |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲設計並且實現一種具有可調控光形的新式光源晶片。該光源晶片由高分子分散液晶(PDLC)、LED與矽基板所組成,並提出利用微加工製程技術來定義PDLC具有微菱鏡陣列結構。藉由整合PDLC的穿透/散射態與其微菱鏡的結構來製作利用輸入電壓即可調控出光光形之功能。此光源晶片的設計具有以下特點:(1)元件不需靠外部的可動件來調控光形,(2)PDLC微菱鏡陣列的結構可輕易地藉由微型模注製程方式做改變,(3)此製作與封裝方式皆屬低溫製程,可降低製程當中對PDLC材料的破壞。
This study designs and implements a novel lighting chip with tunable radiation pattern. The lighting chip consists of polymer-dispersed liquid crystal (PDLC) microprism array, LED, and Si-carrier. The PDLC-microprism array, implemented using the micromachining processes, has been reported for the first time. By integrating the characteristics of microprism and the scattering/transmitting modes of PDLC, the PDLC-microprism enables the tuning of radiation pattern of the transmitted light by input voltage. In short, the lighting chip with PDLC-microprism has the following advantages, (1) no moving parts are required to tune the radiation pattern, (2) the shape of PDLC-microprism array can be easily changed by micro molding processes, and (3) the fabrication and packaging are performed at low temperature and the damage of PDLC during processes is prevented.
[1] N. Holonyak, “Is The Light Emitting Diode(LED) An Ultimate Lamp?,” The American Journal of Physics, 68, pp. 864–866, 2000.
[2] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” Journal of Display Technology, 3, pp 160-175, 2007.
[3] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Japanese Journal of Applied Physics, 30, pp 1705-1707, 1991.
[4] K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of High-Bright and Pure-White LED Lamps,” Journal of Light & Visual Environment, 22, pp 2-5, 1998.
[5] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence Conversion of Blue Light Emitting Diodes,” Applied Physics A: Materials Science & Processing, 64, pp 417-418, 1997.
[6] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-High Efficiency White Light Emitting Diodes,” Japanese Journal of Applied Physics, 45, pp 1084-1086, 2006.
[7] 史光國, 半導體發光二極體及固態照明. 台北, 台灣, 全華科技圖書有限公司, 2006.
[8] 陳政寰, “發光二極體於投影顯示照明之應用,” 科儀新知, 3, pp 19-24, 2006.
[9] http://www.everlight.com/index.php
[10] R. S. West, H. Konijn, S. Kuppens, N. Pfeffer, Q. V. Vader, Y. Martynov, T. Heemstra, J. Sanders, T. Yagi, G. Harbers, “LED Backlight for Large Area LCD TV’s,” Proceeding of the 10th International Display Workshops, Fukuoka, Japan, 2003, pp 657-660.
[11] N. Narendran, and Y. Gu, “Life of LED-Based White Light Sources,” Journal of Display Technology, 1, pp 167-171, 2005.
[12] M. Arik, C. Becker, S. Weaver, and J. Petroski, “Thermal Management of LEDs Package to System,” Proceeding of SPIE, San Diego, CA, Aug, 2003, pp 64-75.
[13] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with Solid State Lighting Technology,” Journal on Selected Topics in Quantum Electronics, 8, pp 310-320, 2002.
[14] K. E. Peterson, “Silicon as a Mechanical Material,” Proceedings of the IEEE, 70, pp 420-457, 1982.
[15] M. C. Wu, “Micromachining for Optical and Optoelectronic Systems,” Proceedings of the IEEE, 85, pp 1833-1856, 1997.
[16] L. Lin, T. K. Shia, and C.-J. Chiu, “Silicon-Processed Plastic Micropyramids for Brightness Enhancement Applications,” Journal of Micromechanics and Microengineering, 10, pp 395-400, 2000.
[17] H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-Focus Flat Liquid Crystal Spherical Lens,” Applied Physics Letters, 84, pp 4789-4791, 2004.
[18] S.-Y. Lee, H.-W. Tung, W.-C. Chen, and W. Fang, “Thermal Actuated Solid Tunable Lens,” IEEE Photonics Technology Letters, 18, pp 2191-2193, 2006.
[19] B. Morgan, C. M. Waits, J. Krizmanic, and R. Ghodssi, “Development of a Deep Silicon Phase Fresnel Lens Using Gray-Scale Lithography and Deep Reactive Ion Etching,” Journal of Microelectromechanical Syetems, 13, pp 113-120, 2004.
[20] T. Fujita, H. Nishihara, and J. Koyama, “Fabrication of Micro Lenses Using Electron-Beam Lithography,” Optics Letters, 6, pp 613-615, 1981.
[21] M. T. Gale, “Replication Technique for Diffractive Optical Elements,” Microelectronic Engineering, 34, pp 321-339, 1997.
[22] M. Heckele, and W. K. Schomburg, “Review on Micro Molding of Thermoplastic Polymers,” Journal of Micromechanics and Microengineering, 14, pp R1-R14, 2004.
[23] http://www.heptagon.fi/
[24] M. Heckele, W. Bacher, and K.D. Muller, “Hot embossing - The Molding Technique for Plastic Microstructures,” Microsystem Technologies, 4, pp 122-124, 1998.
[25] L. Lin, Y. T. Cheng, and C. J. Chiu, “Comparative Study of Hot Embossed Microstructures Fabricated by Laboratory and Commercial Environments,” Microsystem Technologies., 4, pp113-116, 1998.
[26] O. Larsson, O. Ohman, A. Billman, L. Lundbladh, C. Lindell, and G. Palmskog, “Silicon Based Replication Technology of 3D-Microstructures by Conventional Cd-Injection Molding Technique,” Proc. 9th Int. Conf. on Solid-State Sensors and Actuators, Transducers’97, Illinois Chicago, June, 1997, pp 1415-1418.
[27] B. Stäger, M. T Gale, and M. Rossi, “Replicated Micro-Optics for Automotive Applications,” Proceedings of SPIE, 5663, pp 238-245, 2005.
[28] M. T. Gale, M. Rossi, H. Rudmann, J. Saarinen, and M. Schnieper, “Applications Of Replicated Diffractive Optical Elements In Consumer Products,” MOC’04 conference, Jena, Germany, Sep., 2004.
[29] C. T. Pan, and C. H. Su, “Fabrication of Gapless Triangular Micro-lens Array,” Sensors and Actuators, 134, pp 631-640, 2006.
[30] S. Park, Y. Jeong, J. Kim, K. Choi, H. C. Kim, D. S. Chung, and K. Chun, “Fabrication of PDMS Microlens for LIF Detection,” Microprocesses and Nanotechnology Conference, Oct, 2005, pp 206-207.
[31] C.- M. Lin, W. -C. Chen, and W. Fang, “Removable Fast Package Technology for MEMS Devices Using Polymer Connectors and Silicon Sockets,” Journal of Micromechanics and Microengineering, 17, pp 2461-2468, 2007.
[32] J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, “Field Controlled Light Scattering from Nematic Microdroplets,” Applied Physics Letters, 48, pp 269-271, 1986.
[33] P. S. Drzaic, “Polymer Dispersed Nematic Liquid Crystal for Large Area Display and Light Valve,” Journal of Applied Physics, 60, pp 2142-2148, 1986.
[34] H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-Focus Microlens Arrays Using Nanosized Polymer-Dispersed Liquid Crystal Droplets,” Optics Communications, 247, pp 101-106, 2005.
[35] S.-K. Fan, C.-P. Chiu, and J.-W. Lin, “Electrowetting on Polymer Dispersed Liquid Crystal,” Applied Physics Letters, 94, 2009.
[36] J.-W. Jeon, J.-Y. Choi, J.-B. Yoon, and K. S. Lin, “A New Three-Dimensional Lithography Using Polymer Dispersed Liquid Crystal (PDLC) Films,” IEEE MEMS 2006, Istanbul, Turkey, January, 2006, pp 22-26.
[37] E. F. Schubert, Light-Emitting Diodes. 2nd Ed., New York, NY: Cambridge, 2006.
[38] 3M Company, 1996, 3M Brightness Enhancement Film, 3M Center, St. Paul, MN.
[39] http://www.dowcorning.com/
[40] H. Kim, Y. J. Lim, B. Yang, K. Choi, and B. Lee, “Geometrical Analysis of Optical Transmission Characteristics of Prism Sheet Layers,” Optical Engineering, 44, pp 12801-01~12801-11, 2005.
[41] P. Yeh, and C. Gu, Optics of Liquid Crystal Displays. 1st Ed., Malden, MA: John Wiley & Sons Inc, 1999.
[42] Merck & Co., Inc.:http://www.merck.com/
[43] H. C. van de Hulst, Light Scattering by Small Particles, New York, NY: Wesley, 1957.
[44] Gentec Benelux (NOA 65):http://www.gentec.be/noa65.pdf
[45] K. G. Lyon, G. L. Salinger, and C A. Swenson, “Linear Thermal Expansion Measurements on Silicon from 6 to 340K,” Applied Physics Letters, 48, pp 865-868, 1977.
[46] W. L. Zhou, H.-Y. Chan, K. H. To, W. C. Lai, and W. J. Li, “Polymer MEMS Actuators for Underwater Micromanipulation,” IEEE/ASME Transactions on Mechatronics, 9, pp 334-342, 2004.
[47] B. A. Grzybowski, S. T. Brittain, and G. M. Whitesides, “Thermally Actuated Interferometric Sensors Based on The Thermal Expansion of Transparent Elastomeric Media,” Review of Scientific Instruments, 70, pp 2031-2037, 1999.
[48] H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal Conductivity of Silicon from 300 to 1400°K,” Physical Review, 130, pp 1743-1748, 1963.
[49] B.-K. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, “Electrically Driven Varifocal Micro Lens Fabricated by Depositing Parylene Directly on Liquid,” MEMS 2007, Kobe, Japan, January, 2007, pp 305-308.