研究生: |
徐英哲 Hsu, Ying-Che |
---|---|
論文名稱: |
基於隨機漫步與共振概念的色彩與圖形之多重解釋研究 A Study of Color and Pattern Multi-Interpretations Based on Random Walk and Resonance Concept |
指導教授: |
鐘太郎
Jong, Tai-Lang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 多重解釋 、像素共振 、隨機共振 、色盲圖 |
外文關鍵詞: | multi-Interpretations, pixel resonance, random-walk, color-blindness |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在數十年來,電腦視覺與圖形辨識已有長足的進步,這些研究發展出多種的辨識方法,其中許多的辨識模型可以達到相當程度的辨識率,這些方法主要都是想達到人類視覺的辨識結果,一個圖形通常會對應到唯一的答案,但是有時候人類對於某些簡單的圖形不見得會有相同的一種答案,關於這種現象我們認為是由於觀察圖片時,人眼對圖片的取樣不同,再經過大腦的理解後,就得到不同的解釋結果。
我們借用量子力學中的光子共振概念與隨機取樣來建立一套像素共振計算法作為解釋這種想法的理論基礎,並且運用蒙地卡羅法則來進行模擬;當給予圖片不同的亂數取樣就可以得到不同的辨識結果,我們稱這為圖形的多重解釋。將像素共振計算法套用在可辨識成兩種結果的字母與中文字,結果可以看出共振計算法中,給予不同的條件會有不同的圖形顯示出來。
在本篇論文裡,我們也將圖形的像素共振與多重解釋延伸到彩色影像與色盲測試圖上,藉由不同條件的共振測試,可以得到不同的共振結果。此外,在CIE xyY色彩空間上來取樣顏色,以用來合成來我們的色盲測試圖,並且利用提出像素共振計算法分析色盲測試圖,也用色盲模擬器來檢驗色盲人觀看我們合成的色盲圖效果,再由模擬色盲觀看色盲測試圖的視覺角度以顯示圖形多重解釋的概念。
For these years, computer vision has made great progress in pattern recognition. Many recognition models have been proposed and some of them achieved fairly good recognition rate. The ultimate goal of these methods is mainly to realize the recognition capability of human vision. Usually, for an image containing a simple object, the human vision will associate only one interpretation of the object in response to such image. However, there are cases where one viewer or different viewers may not always respond with the same answer when viewing the same simple figure. We call this multi-interpretations. About this phenomenon, we propose an explanation that it is because the viewer(s) might have different sensing criterion when viewing an image. After the differently sensed result is received and processed by the brain, different response pattern might be produced, thus different interpretations to the same image occur.
To support our idea of explaining the aforementioned phenomena, we develop a pixel resonance concept based on random sampling and the photon cluster resonance concept of quantum mechanics to model different sensing criterion effect. A Monte Carlo method is applied in our pixel resonance simulation to illustrate the proposed multi-interpretations concept. If a given image is randomly sampled by different sampling energy, different resonance results might be obtained, thus multi-interpretations.
We then extend the pixel resonance and multi-interpretations concept to color image and color blindness tests. Using different resonance conditions, the different resonance images are obtained. In addition, we further explain the concept about multi-interpretations by simulating color blind vision of color blindness tests.
[1] F. W. Mast and S. M. Kosslyn, "Visual mental images can be ambiguous: Insights from spatial transformation abilities," Journal of Cognitive Neuroscience, pp. 71-71, 2000.
[2] R. J. Sternberg, Cognitive psychology, Fort Worth ed.: Harcourt Brace College Publishers, 1996.
[3] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd Edition): Prentice Hall, 1998.
[4] R. Duda, P. Hart, and D. Stork, Pattern Classification (2nd Edition): Wiley-Interscience, 2000.
[5] C. L. Fefferman, "The uncertainty principle," Bulletin, new series, of the American Mathematical Society vol. 9, pp. 129--206, 1983.
[6] S. Gasiorowicz, Quantum physics. United States: John Wiley and Sons, Inc., New York, 1974.
[7] L. Gammaitoni, P. H□nggi, P. Jung, and F. Marchesoni, "Stochastic resonance," Reviews of Modern Physics, vol. 70, p. 223, 1998.
[8] L. Gammaitoni, F. Marchesoni, and S. Santucci, "Stochastic Resonance as a Bona Fide Resonance," Physical Review Letters, vol. 74, p. 1052, 1995.
[9] W. Thomas, S. Vyacheslav, and B. Andreas, "Stochastic resonance," Reports on Progress in Physics, vol. 67, pp. 45-105, 2004.
[10] Y. J. Kim, M. Grabowecky, and S. Suzuki, "Stochastic resonance in binocular rivalry," Vision Research, vol. 46, pp. 392-406, Feb 2006.
[11] H. Sasaki, M. Todorokihara, T. Ishida, J. Miyachi, T. Kitamura, and R. Aoki, "Effect of noise on the contrast detection threshold in visual perception," Neuroscience Letters, vol. 408, pp. 94-97, 2006.
[12] E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and F. Moss, "Visual perception of stochastic resonance," Physical Review Letters, vol. 78, pp. 1186-1189, Feb 1997.
[13] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal, "Markov chain Monte Carlo in practice: A roundtable discussion," American Statistician, vol. 52, pp. 93-100, May 1998.
[14] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P. J. Nordlund, "Particle filters for positioning, navigation, and tracking," Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], vol. 50, pp. 425-437, 2002.
[15] S. Maskell and N. Gordon, "A Tutorial on Particle Filters for On-line Nonlinear/Non-Gaussian Bayesian Tracking," IEEE Transactions on Signal Processing, vol. 50, pp. 174-188, 2001.
[16] Y. S. Chen and M. H. Wang, "An approach to perceiving the multi-meaningful-dotted-pattern in a CBP image," IEICE Transactions on Information and Systems, vol. E84D, pp. 751-754, Jun 2001.
[17] Y. H. Kuo and J. P. Hsu, "Color-blindness plate recognition using a neuro-fuzzy approach," Engineering Applications of Artificial Intelligence, vol. 11, pp. 531-547, Aug 1998.
[18] I. Biederman, "Recognition-by-components: A theory of human image understanding," Psychological Review, vol. 94, pp. 115-147, 1987.
[19] B. S. Tjan and A. S. Nandy, "Classification images with uncertainty," Journal of Vision, vol. 6, pp. 387-413, 2006.
[20] H. E. Pashler, Attention Psychology Press, 1998.
[21] P. Verghese, "Visual Search and Attention: A Signal Detection Theory Approach," Neuron, vol. 31, pp. 523-535, 2001.
[22] L. Q. Chen, X. Xie, X. Fan, W. Y. Ma, H. J. Zhang, and H. Q. Zhou, "A visual attention model for adapting images on small displays," Multimedia Systems, vol. 9, pp. 353-364, Oct 2003.
[23] N. Metropolis and S. Ulam, "The Monte Carlo Method," Journal of the American Statistical Association, vol. 44, pp. 335-341, 1949.
[24] M. H. Kalos and P. A. Whitlock, Monte Carlo methods. Vol. 1: basics: Wiley-Interscience, 1986.
[25] 林誠謙, "蒙地卡羅法簡介," 物理會刊,11卷,2期, pp. 163-176, 1989.
[26] M. Riani and E. Simonotto, "Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network model," Physical Review Letters, vol. 72, p. 3120, 1994.
[27] P. H□nggi, "Stochastic Resonance in Biology How Noise Can Enhance Detection of Weak Signals and Help Improve Biological Information Processing," ChemPhysChem, vol. 3, pp. 285-290, 2002.
[28] D. F. Russell, L. A. Wilkens, and F. Moss, "Use of behavioural stochastic resonance by paddle fish for feeding," Nature, vol. 402, pp. 291-294, 1999.
[29] R. W. G. Hunt, "Colour Science : Concepts and Methods, Quantitative Data and Formulas," Journal of Modern Optics, vol. 15, pp. 197 - 197, 1968.
[30] M. Kalloniatis and C. Luu. (2003). Psychophysics of Vision. [Online]. Available: http://webvision.med.utah.edu.
[31] R. C. Gonzalez and R. E. Woods, Digital Image Processing: Addison-Wesley Longman Publishing Co., Inc., 1992.
[32] D. Malacara, Color vision and colorimetry: theory and applications, vol. 42: SPIE press, 2002.
[33] Specification of sRGB. [Online]. Available: http://www.color.org/sRGB.pdf.
[34] F. H. G. Pitt, "The nature of normal trichromatic and dichromatic vision," Proceedings of the Royal Society of London Series B-Biological Sciences, vol. 132, pp. 101-117, Mar 1944.
[35] W. A. H. Rushton, "A Visual Pigment in Deuteranope," Journal of Physiology-London, vol. 169, pp. P31-&, 1963.
[36] W. A. H. Rushton, "Visual Pigments and Color Blindness," Scientific American, vol. 232, pp. 64-&, 1975.
[37] W. D. Wright, "The Characteristics of Tritanopia," Journal of the Optical Society of America, vol. 42, pp. 509-521, 1952.
[38] D. B. Judd and G. Wyszecki, Color in business, science, and industry / Deane B. Judd and Gunter Wyszecki, 3d ed. ed. New York :, 1975.
[39] S. K. Shevell, The science of color, 2nd ed. Amsterdam ; Boston: Elsevier, 2003.
[40] T. G. Wolfmaier. Designing for the Color-Challenged: A Challenge. [Online]. Available: http://www.internettg.org/newsletter/mar99/accessibility_color_challenged.html.
[41] Y. Hu, "Visual simulating dichromatic vision in CIE space," INSTICC - Institute for Systems and Technologies of Information, Control and Communication, 2006, pp. 92-97.
[42] T. Wachtler, U. Dohrmann, and R. Hertel, "Modeling color percepts of dichromats," Vision Research, vol. 44, pp. 2843-2855, Nov 2004.
[43] F. Vienot and H. Brettel, "Color display for dichromats," 2000, vol. 4300, pp. 199-207.
[44] C. E. Martin, J. G. Keller, S. K. Rogers, and M. Kabrisky, "Color blindness and a color human visual system model," IEEE Transactions on Systems Man and Cybernetics Part a-Systems and Humans, vol. 30, pp. 494-500, Jul 2000.
[45] H. Brettel, F. Vienot, and J. D. Mollon, "Computerized simulation of color appearance for dichromats," Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 14, pp. 2647-2655, Oct 1997.
[46] Y.-C. Shen, Y.-S. Chen, and W.-H. Hsu, "Computer simulation of color-blindness and its application to the design of color-blindness-discrimination-spectacles (CBDS)," Chinese Journal of Medical and Biological Engineering, vol. 16, pp. 61-83, 1996.
[47] J. Birch, "Efficiency of the Ishihara test for identifying red-green colour deficiency," Ophthalmic and Physiological Optics, vol. 17, pp. 403-408, Sep 1997.
[48] B. Dougherty and A. Wade. Vischeck. [Online]. Available: www.vischeck.com.
[49] D. Y. Lee and M. Honson, "Chromatic variation of Ishihara diagnostic plates," Color Research and Application, vol. 28, pp. 267-276, Aug 2003.
[50] S. J. Dain, "Clinical colour vision tests," Clinical and Experimental Optometry, vol. 87, pp. 276-293, Jul 2004.
[51] A. L. Yarbus, Eye movements and vision: Plenum, 1967.