研究生: |
張啟聖 Chi-Sheng Chang |
---|---|
論文名稱: |
Structures and Aggregation of Electroluminescent MEH-PPV in Solution State Probed by Small Angle Neutron Scattering and Viscometry |
指導教授: |
陳信龍
Hsin-Lung Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | MEH-PPV 、Semi-conducting polymer 、Conjugated polymer 、hairy-rod polymer 、Nanoscale nematic aggregate 、Small angle neutron scattering 、Physical cross-links |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The hairy-rod segments of conjugated polymers MEH-PPV undergo aggregation in the solutions of low concentration and the resultant aggregates with unknown structure have strong impacts on the photophysical properties of the polymers for opto-electronic applications. Using small angle neutron scattering (SANS), we have systematically investigated the conformational structures and aggregation behavior of MEH-PPV dissolved in chloroform and toluene. MEH-PPV dissolved in good solvent chloroform exhibited the expanded Gaussian chain behavior, which can be represented by the successive connection of rod-like segments with the length of ca. 157Å. The rod segments aggregates prevalently in the poorer solvent, toluene. We have also demonstrated that these aggregates were nanoscale nematic domains characterized by the mass fractal dimension of ca. 1.7 and radius of gyration of ca. 90Å. These aggregates accounted for about 10% of the total polymer volume fraction in the freshly prepared MEH-PPV/toluene solution. This kind of nematic aggregate distinguished from the nematic phase found in the classical lyotropic liquid crystalline systems in the sense that they are microphase-separated domains appearing at the concentration well below the threshold lyotropic concentration prescribed by the mean-field theory. The anomalous segmental aggregation is proposed to stem from the enrichment of segmental concentration around the inter-chain overlap points in the solution coupled with the attractive force between the hairy-rod segments induced by the relatively poor solvent quality. This nanoscale aggregation could be prevalent among semi-rigid polymers in general as a process preceding the formal formation of macroscopic nematic phase along the concentration coordinate.
Prolonged aging of the freshly prepared MEH-PPV/toluene solution at low temperature induced the development of another type of aggregates which functioned as physical cross-links among the dissolved chains and consequently transformed the initially viscous solution into the soft gel. The viscosity of the solution increased upon aging, indicating the formation of this kind of aggregates caused the agglomerations of several clusters or growth of clusters from the dissolved chains. The high activation barrier involved in the formation of these aggregates during the aging process implied that they were most likely nanocrystallite. Improvement of solvent quality through heating could melt these nanocrystalline aggregates. The subsequent cooling recovered the nematic aggregates but not nanocrystallite aggregates.
[1] Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., Heeger, A. J. J. Chem. Soc. Chem. Commun. 579, 1977.
[2] Chien, J.C.W. Polyacetylene : Chemistry, Physics, and Material Science (Academic Press, Orlando, 1984).
[3] Tang, C.W., Van Slyke, S.A. Appl. Phys. Lett. 51, 913, 1987.
[4] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., Holmes, A. B. Nature 347, 539, 1990.
[5] Grüner, J., Cacialli, F., Friend, R.H. J. Appl. Phys. 80, 207, 1996.
[6] Braun, D., Heeger, A. J. Appl. Phys. Lett. 58, 1982, 1991.
[7] Braun, D., Heeger, A. J. Thin Solid Films, 216, 96, 1992.
[8] Atkins, P. W. The Elements of Physical Chemistry (Oxford University Press, 1996).
[9] Krivoshei, I. V., Skorobogatov, V. M., Polyacetylene and Polyarylenes: Synthesis and Conductive properties (Gordon and Breach Science, 1991).
[10] Lakowicz, J. R., Principles of Fluorescence Spectroscopy (Kluwer Academic / Plenum, New York, 1999).
[11] Hadziioannou, G., van Hutten, P. F. (Eds.), Semiconducting polymers: Chemistry, Physics and Engineering (WILEY-VCH, Weinheim, 2000).
[12] Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., dos Santos, D. A., Brédas, J. L., Löglund, M., Salaneck, W. R. Nature 397, 121, 1999.
[13] Malliaras, G. G., Scott, J. C. J. Appl. Phys. 83, 5399, 1998.
[14] Inigo, A. R., Tan, C. H., Fann, W.S., Huang, Y. S., Perng, G. Y., Chen, S.-A. Adv. Mater. 13, 504, 2001.
[15] Tan, C. H., Inigo, A. R., Fann, W. S., Wei, P.-K., Perng, G.-Y., Chen, S.-A. Organic Electronics 3, 81, 2002.
[16] Shuai, Z., Beljonne, D., Silbey, R., Brédas, J. Phys. Rev. Lett. 84, 131, 2000.
[17] Hong, T. M., Meng, H. F. Phys. Rev. B 63,075206, 2001.
[18] Wohlgenannt, M., Tandon, K., Mazumdar, S., Ramasesha, S., Vardeny, Z. V. Nature 409, 494, 2001.
[19] Lin, L. C., Meng, H. F., Shy, J. T., Horng, S. F., Yu, L. S., Chen, C. H., Liaw, H. H., Huang, C. C., Peng, K. Y., Chen, S. A. Phys. Rev. Lett. 90, 036601, 2003.
[20] Pope, M., Swenberg, C. E. Electronic Processes in Organic Crystals (Oxford University, New York, 1982).
[21] Pavia, D. L., Lampman, G. M., Kriz, G. S. Introduction to spectroscopy :a guide for students of organic chemistry (Harcourt College, 2001).
[22] Köhler, A., Grüner, J., Friend, R. H., Müllen, K., Scherf, U. Chem. Phys. Letters 243, 456, 1995.
[23] Lemmer, U., Heun, S., Mahrt, R. F., Scherf, U., Hopmeier, M., Siegner, U., Göbel, E. O., Müllen, K., Bässler, H. Chem. Phys. Letters 240, 373, 1995.
[24] Blatchford, J. W., Gustafson, T. L., Epstein, A. J., Vanden Bout, D. A., Kerimo, J., Higgins, D. A., Barbara, P. F., Fu, D.-K., Swager, T. M., MacDiarmid, A. G. Phys Rev B 54, R3683, 1996.
[25] Blatchford, J. W., Jessen, S. W., Lin, L.-B., Gustafson, T. L., Fu, D.-K., Wang, H.-L., Swager, T. M., MacDiarmid, A. G., Epstein, A. J. Phys Rev B 54, 9180, 1996.
[26] Hsu, J.-H., Fann Wunshain, Tsao, P.-H., Chuang, K.-R., Chen, S.-A. J. Phys. Chem. A 103, 2375, 1999.
[27] Truuo, N. J. Modern Molecular Photochemistry (University Science Books, Sausalito, California, 1991).
[28] Jenekhe, S. A., Osaheni, J. A. Science 265, 765, 1994.
[29] Samuel, I. D. W., Rumbles, G., Collison, C. J. Phys. Rev. B 52, R11573, 1995.
[30] Nguyen, T.-Q., Wu, J., Doan, V., Schwartz, B. J., Tolbert, S. H. Science 288, 652, 2000.
[31] Becker, H., Spreitzer, H., Ibrom, K., Kreuder, W. Macromolecules 32, 925, 1999.
[32] Padmanaban, G., Ramakrishnan, S. J. Am. Chem. Soc. 122, 2244, 2000.
[33] Peng, K.-Y., Chen, S.-A., Fann, W.-S. J. Am. Chem. Soc. 123, 11388, 2001.
[34] Nguyen, T.-Q., Doan, V., Schwartz, B. J. J. Chem. Phys. 110, 4068, 1999.
[35] Nguyen, T.-Q., Martini, I. B., Liu, J., Schwartz, B. J. J. Phys. Chem. B 104, 237, 2000.
[36] Shi, Y., Liu, J., Yang, Y. J. Appl. Phys. 87, 4254, 2000.
[37] Liu, J., Guo, T. F., Yang, Y. J. Appl. Phys. 91, 1595, 2002.
[38] Grell, M., Bradley, D. D. C., Long, X., Chamberlain, T., Inbasekaran, M., Woo, E. P., Soliman, M. Acta Polym. 49, 439, 1998.
[39] Grell, M., Bradley, D. D. C., Ungar, G., Hill, J., Whitehead, K. S. Macromolecules 32, 5810, 1999.
[40] Huang, W. Y., Gao, W., Kwei, T. K., Okamoto, Y. Macromolecules 34, 1570, 2001.
[41] Huang, W. Y., Matsuoka, S., Kwei, T. K., Okamoto, Y. Macromolecules 34, 7166, 2001.
[42] Malik, S., Jana, T., Nandi, A. K. Macromolecules 34, 275, 2001.
[43] Wudl, F., Srdanov, G. U.S. Patent No. 5,189,136, 1990.
[44] Glinka, C. J., Barker, J. G., Hammouda, B., Krueger, S., Moyer, J. J., Orts, W. J. J. Appl. Cryst. 31, 430, 1998.
[45] Su, A. C. joint manuscript of the Excellent project.
[46] Cold Neutron Research Facility at the National Institute of Standards and Technology, NG3 and NG7 30-Meter SANS Instruments Data Acquisition Manual, 1999.
[47] Bohdanecký, M., Kovář, J. Viscosity of Polymer solutions, (Elsevier, Amsterdam, 1982).
[48] Kramer, E. O. Ind. Eng. Chem. 30, 1200, 1938.
[49] Maron, S. H., Reznik, R. B. J. Polym. Sci. Part A-2 7, 309, 1969.
[50] Streeter, D. J., Boyer, F. F. Ind. Eng. Chem. 43, 1790, 1951.
[51] Huang, Y.-F. Ph.D. Thesis, National Sun Yat-sen University.
[52] Flory, P. J. Adv. Polym. Sci. 59, 1, 1984.
[53] Itou, T., Teramoto, A. Macromolecules 21, 2225,1988.
[54] Khokhlov, A. R., Semenov, A. N. Physica A 108A, 546, 1981.
[55] Rubinstein, M., Colby, R. H. Polymer Physics (Oxford University, Oxford, 2003).
[56] The threshold lyotropic concentration of semi-rigid polymer solutions can be estimated by the semi-empirical equation, □p* = (8/ar) (1 – 2/ar) with ar being the aspect ratio of the Kuhn segment [52] [57]. □p* normally lies above 10 % except for some systems constituted by Kuhn segments with very large aspect ratio (□80). Considering a very stiff □-helical poly(□-benzyl-L-glutamate) as an example, the threshold lyotropic concentrations were found to range from ca. 5 % to ca. 8 % for the aspect ratios spanning from ca. 150 to 95 [58] [59] . These concentrations are still higher than the concentrations of the conjugated polymer solutions containing the aggregates.
[57] Flory, P. J. Proc. Royal Soc., London A 234, 73, 1956.
[58] Robinson, C. Trans. Faraday Soc. 52, 571, 1956; Robinson, C., Ward, J. C., Beevers, R. B. Discuss. Faraday Soc. 25, 29, 1958.
[59] Uematsu, I., Uematsu, Y. Adv. Polym. Sci. 59, 37, 1984.
[60] Higgins, J. S., Benoît, H. C. Polymers and Neutron Scattering (Oxford University, New York, 1994).
[61] Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science (Oxford University, New York, 2000).
[62] Aime, J. P., Bargain, F., Schott, M., Eckhardt, H., Miller, G. G., Elsenbaumer, R. L. Phys. Rev. Lett. 62, 55, 1989.
[63] Chen, S.H., Su, A. C., Chou, H. L., Peng, K. Y., Chen, S. A. Macromolecules 37, 167, 2004.
[64] Gettinger, C. L., Heeger, A. J., Drake, J. M., Pine, D. J. J. Chem. Phys. 101, 1673, 1994.
[65] Aime, J. P., Bargain, F., Schott, M., Eckhardt, H., Miller, G. G., Elsenbaumer, R. L. Phys. Rev. Lett. 62, 55, 1989.
[66] Feigin, L.A., Svergun, D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum, New York, 1987).
[67] Hu, D., Yu, J., Wong, K., Bagchi, B., Rossky, P. J., Barbara, P. F. Nature 405, 1030, 2000.
[68] Strobl, G. R. The Physics of Polymers (Springer-Verlag, Berlin, 1996).
[69] Yang, C. Y., Hide, F., Díaz-García, M. A., Heeger, A. J. Polymer 39, 2299, 1998.
[70] Wenig, W., Hammel, R., MacKnight, W. J., Karasz, F. E. Macromolecules 9, 253, 1976.
[71] Su, A. C. PhD Dissertation, University of Cincinnati, 1986; Ch. 5.
[72] Shultz, A. R., McCullough, C. R. J. Polym. Sci. Polym. Phys. 10, 307, 1972.
[73] Kwei, T. K., Frisch, H. L. Macromolecules 11, 1267, 1978.