研究生: |
金怡君 Chun, Yi-Chun |
---|---|
論文名稱: |
應用於高功率鋰離子電池之LiNi0.5Mn1.5O4正極材料的合成與電化學性質之改良 Synthesis and Improvement of Electrochemical Characteristics in LiNi0.5Mn1.5O4 Cathode Material for High Power Lithium Ion Battery |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
劉偉仁
Liu, Wei-Ren 詹宏偉 Chan, Hong-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 鋰鎳錳氧 、鋰離子電池 、高功率 、正極材料 |
外文關鍵詞: | LiNi0.5Mn1.5O4, Lithium Ion Battery, High Power, Cathode Material |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於電動車市場與多功能電子產品的崛起,鋰離子電池之需求已由原先高能量密度轉變為高功率密度、高安全性與長圈數循環壽命。因此,本研究針對新型LiNi0.5Mn1.5O4正極材料進行深入研究,其具備高伏充放電平台與高結構穩定度之尖晶石結構等優勢。
在粉體製備方面,藉由改良式共沉澱法,使用草酸取代傳統之氨水作為共沉劑,並以金屬氯酸鹽類作為起始物,可有效製備出高結晶度且無雜相之LiNi0.5Mn1.5O4正極材料。另外,藉由高分子添加劑之輔助,還可進一步控制合成粉體之顆粒大小,並伴隨多孔性結構之形成。於電化學性質改良上,700 oC合成之LiNi0.5Mn1.5O4正極材料,於室溫(25oC)下之循環充放電表現優異,於200圈後還可維持90%以上的初始電容量,而高溫(55oC)下亦可維持於80%以上。另一方面,若使用奈米粒徑之LiNi0.5Mn1.5O4粉體,其快速充放電性質亦有優異表現,於7C高放電速率下,其電容量可由原先的40 mA/g大幅提升至100 mA/g。
經由調整煆燒溫度得出不同結晶結構之LiNi0.5Mn1.5O4材料,在700 oC擁有鎳錳規則排列之P4332結構,而在750 oC時完全轉變成鎳錳不規則排列之Fd3m結構。此一結構轉變與粉體內部三價錳的產生具有高度相關,可由X光繞射得出之晶格常數變化與紅外線光譜搭配循環伏安圖分析得知。錳離子的價態變化源自於LiNi0.5Mn1.5O4高溫燒結之氧散失現象,氧空缺造成粉體內部價電不平衡,最後導致非計量比的LiNi0.5Mn1.5O4-x與三價錳的產生。深入研究發現,存在適量的三價錳可有效提升LiNi0.5Mn1.5O4的快速充放電表現,在高放電速率7C下還可保有83%以上之初始電容量。此一優異表現源自於非計量比LiNi0.5Mn1.5O4-x之導電度的提升與快速的相變化轉換,而本研究亦提出另一新觀點,歸功於鎳錳離子在LiNi0.5Mn1.5O4-x晶格中的不規則排列導致電子躍遷速率之有效提升。
Recently, there is a great demand for lithium ion battery to change from high energy density toward high power density owing to the rise of electronic vehicle market. LiNi0.5Mn1.5O4, an extended cathode material of spinel LiMn2O4 which possesses the advantages of high power density, safety and long cycle life, is intensively investigated for next generation high power supply.
For realistic applications, pristine LiNi0.5Mn1.5O4 still has some bottlenecks to overcome, including: (i) the degraded cyclability due to impurity contents, (ii) poor rate capability owing to a relatively low conductivity, (iii) severe capacity fading at high temperature caused by material dissolutions, and (iv) the delayed phase transition during charge-discharge processes. Therefore, a modified co-precipitation method was developed in this study. The impurity-free spinel LiNi0.5Mn1.5O4 cathode material with high-crystallinity was successfully fabricated. A significantly improved cyclability at both room temperature and elevated temperature was revealed. The best capacity retention of as-fabricated LiNi0.5Mn1.5O4 cathode at 25 oC and 55 oC are 97 % and 90% respectively after 100 cycles. The serious capacity decay associated with material dissolutions in conventional cathode was also suppressed by applying the modified co-precipitation method, which produces a highly-stoichiometric LiNi0.5Mn1.5O4 with a better structural stability.
In order to enhance the rate capability, the polymer-assisted method was incorporated to control the particle size of pristine LiNi0.5Mn1.5O4. The excellent capacity retention around 88 % was derived by nano-sized LiNi0.5Mn1.5O4 at a high cycling rate of 7 C, which significantly increased about 40 % as compared to micro-sized one. Besides, the rate capability of LiNi0.5Mn1.5O4 was also promoted by controlling Mn3+ contents during material calcinations. Through adjusting the calcination temperature, the oxygen non-stoichiometric LiNi0.5Mn1.5O4-x was derived above 700 oC, accompanying the formation of Mn3+ and crystallographic structure transformations. The superior capacity retention about 83 % was achieved in non-stoichiometric LiNi0.5Mn1.5O4-x (x=0.033) cathode with higher Mn3+ contents cycled at 7 C.
1. M. Yoshio, R. J. Brodd, and A. Kozawa (Eds.), “Lithium-Ion Batteries Science and Technologies”, Springer, 15-20 (2009)
2. Y. Matsuda, Z. Takehara (Eds.), and D. Binran, “Battery Handbook”, 3rd Ed., Maruzen, Tokyo 145-146 (2001)
3. Y. P. Wu, E. Rahm, and R. Holze, “Carbon anode materials for lithium ion batteries”, J. Power Sources 114, 2, 228-236 (2003)
4. T. P. Kumar, T. S. Kumari and A. M. Stephan, “Carbonaceous anode materials for lithium-ion batteries–the road ahead”, J. Indian Inst. Sci. 89, 4 (2009)
5. M. S. Whittingham,”Lithium Batteries and Cathode Materials”, Chem. Rev. 104, 4271−4301 (2004)
6. C. Wolverton and A. Zunger, “Prediction of Li Intercalation and Battery Voltages in Layered vs. Cubic LixCoO2”, J. Electrochem. Soc. 145, 24, 24-31 (1998)
7. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density”, Mater. Res. Bull. 15, 783-789 (1980)
8. M. M. Thackeray, P. J. Johnson, L. A. De Picciotto, P. G. Bruce, and J. B. Goodenough, “Electrochemical Extraction of Lithium from LiMn2O4”, Mater. Res. Bull. 19, 179-187 (1984)
9. D. G. Wickham and W. J. Croft, “Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese”, J. phys. Chem. Solids 7, 351-360 (1958)
10. T. Kimura and Y. Tokura, “Layered magnetic manganite”, Annual Review of Materials Science 30, 451-474 (2000)
11. J. M. Tarascon, E. Wang, F. K. Shokoohi, W, R. McKinnon, and S. Colson, “The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells”, J. Electrochem. Soc. 138, 10 (1991)
12. D. H. Jang, Y. J. Shin, and S. M. Oh, “Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/LiMn2O4 Cells”, J. Electrochem. Soc. 143, 7 (1996)
13. M. M. Thackeray, Y. S. Horn, A. J. Kahaian, K. D. Kepler, E. Skinner, J. T. Vaughey, and S. A. Hackney “Structural Fatigue in Spinel Electrodes in High Voltage (4V) Li/LixMn2O4 Cells”, Electrochem. Solid-State Lett. 1, 1, 7-9 (1998)
14. R. K. Mishra and G. Thomas, “Surface Energy of Spinel”, J. Appli. Phys. 48, 4576-4580 (1977)
15. T. Ohzuku, S. Takeda, and M. Iwanaga, “Solid-state redox potentials for Li[Me1/2Mn1/3]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries”, J. Power Sources 81, 82, 90–94 (1999)
16. R. J. Gummow, A. Kock, M. M. Thackeray, “Improved capacity retention in rechargeable 4 V lithium/lithium manganese oxide (spinel) cells”, Solid State Ionics 69, 59-67 (1994)
17. T. F. Yi, Y, Xie, M.F. Ye, L. J. Jiang, R. S. Zhu, and Y. R. Zhu “Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries”, Ionics (2011) 17:383 – 389
18. S. Patoux, L. Sannier, H. Lignier, Y. Reynier, C. Bourbon, S. Jouanneau, F. L. Cras, and S. Martinet “High voltage nickel manganese spinel oxides for Li-ion batteries”, Electrochimica Acta 53, 4137–4145 (2008)
19. R. Santhanam and B. Rambabu” Research progress in high voltage spinel LiNi0.5Mn1.5O4 material”, J. Power Sources 195, 5442–5451 (2010)
20. G. Q. Liu, L. Wen and Y. M. Liu, “Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries”, J. Solid State Electrochem. 14, 12, 2191-2202 (2010)
21. S. Patoux , L. Sannier, H. Lignier, Y. Reynier, C. Bourbon, S. Jouanneau, F. Le Cras, and S. Martinet, ” High voltage nickel manganese spinel oxides for Li-ion batteries”, Electrochimca Acta 53, 12, 4137-4145 (2008)
22. K. Ariyoshi, Y. Makimura, T. Ohzuku, and K. Ozawa (Eds.), “Lithium Ion Rechargeable Batteries”, Wiley-Vch, 11-29 (2009)
23. H. Wu, C. V. Rao, and B. Rambabu, ” Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor”, Mater. Chem. Phys. 116, 532–535 (2009)
24. Z. Chang, D. Dai, H. Tang, X. Yu, X. Z. Yuan, and H. Wang, ”Effects of precursor treatment with reductant or oxidant on the structure and electrochemical properties of LiNi0.5Mn1.5O4”, Electrochimica Acta 55, 5506–5510 (2010)
25. X. Y. Feng, C. Shen, X. Fang, and C. H. Chen, “Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance”, J. Alloys Compd. 509, 3623–3626 (2011)
26. N. M. Hagh, F. Cosandey, S. Rangan, R. Bartynski, and G. G. Amatucci, “Electrochemical Performance of Acid-Treated Nanostructured LiMn1.5Ni0.5O4− Spinel at Elevated Temperature”, J. Electrochem. Soc. 157, 3, A305-A319 (2010)
27. M. Kunduraci and G. G. Amatucci, “Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2− xNixO4 (0.50 ≥ x ≥ 0.36) spinels”, J. Power Sources 165, 359–367 (2007)
28. J. B. Goodenough and Y. Kim, “Challenges for Rechargeable Li Batteries”, Chem. Mater. 22, 587–603 (2010)
29. P. G. Bruce, "Solid-State Chemistry of Lithium Power Sources", Chem. Commun.18, 17-24 (1997)
30. M. M. Thackeray, “Manganese Oxides for Lithum Batteries” Prog. Solid State Chem. 25, 1-71 (1997)
31. Y. Sakurai, U. S. Patent, No. 4,675,260 (1987)
32. D. H. Doughty, "Materials Issues in Lithium Ion Rechargeable Battery Technology," Sample J. 32, 2, 75-81 (1996)
33. L. Gautier, M. Meeus, and J. Scoyer, "Optimized Cathode Material for Lithium-Ion Batteries," Progress in Batteries & Battery Materials 16, 30-43 (1997)
34. W. F. Howard, ” Batteries Energy,Energy Storage Publising (ESP)”, No.32, 64-65 (2011)
35. W. S. John, R. R. Heikes, and D. D. Sestrich, “The preparation, crystallography, and magnetic properties of the LixCo1-xO2 system”, J. Phys. Chem. Solids 7, 1-13 (1958)
36. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner and H. W. Lin, “A Rechargeable Li/LixCoO2 Cell”, J. Power sources 21, 25-31(1987)
37. J. Morales, C. P. Vicente, and J. L. Tirado, “Cation Distribution and Chemical Deintercalation of Li1-XNi1+XO2”, Mat. Res. Bull. 25, 623-630 (1990)
38. J. R. Dahn, U. von Sacken, M. W. Jazkow, and H. A. Janaby, “Rechargeable LiNiO2 /Carbon Cells”, J. Electrochem. Soc. 138, 2207-2211 (1991)
39. G. T. and K. Fey, “New high voltage cathode materials for rechargeable lithium batteries”, Active and Passive Electronic. 18, 11-26 (1995)
40. C. Delmas, M. Menetrier, L. Croguennec, S. Levasseur, J. P. Peres, C. Pouillere, G. Prado, L. Fournès, and F. Weill “Lithium batteries: a new tool in solid state chemistry”, Int. J. Inorg. Mater. 1, 11-19 (1999)
41. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, "Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells", Electrochimca Acta, 38, 9-11, 59-67 (1993)
42. C. Masquelier, "Chemical and Magnetic Characterization of Spinel Materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 System", J. Solid State Chem. 123, 255-266 (1996)
43. J. B. Goodenough, “Cathode materials: A personal perspective”, J. Power Sources 174, 996-1000 (2007)
44. B. L. Ellis, K. T. Lee, and L. F. Nazar, “Positive Electrode Materials for Li-Ion and Li-Batteries”, Chem. Mater. 22, 691–714 (2010)
45. C. M. Julien and M. Massot, “Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel”, Mater. Sci. Eng. B 97, 217-230 (2003)
46. D. Capsoni, M. Bini, G. Chiodelli, P. Mustarelli, V. Massarotti, C. B. Azzoni, M. C. Mozzati, and L. Linati “Inhibition of Jahn-Teller Cooperative Distortion in LiMn2O4 Spinel by Ga3+ Doping”, J. Phys. Chem. B 106, 7432-7438 (2002)
47. K. Suryakala, K. R. Marikkannu, G. P. Kalaignan and T. Vasudevan, “Synthesis and Electrochemical Characterization of LiMn2O4 and LiNd0.3Mn1.7O4 as Cathode for Lithium Ion Battery”, Int. J. Electrochem. Sci. 3, 136-144 (2008)
48. S. Shi, D. S. Wang, S. Meng, L. Chen, and X. Huang, “First-principles studies of cation-doped spinel LiMn2O4 for lithium ion batteries”, Phys. Rev. B 67, 115-130 (2003)
49. A. Caballero, M. Cruz, L. Herna´n, M. Melero, J. Morales, and E. R. Castello´n, “Oxygen Deficiency as the Origin of the Disparate Behavior of LiM0.5Mn1.5O4 (M= Ni, Cu) Nanospinels in Lithium Cells”, J. Electrochem. Soc. 152, 3, A552-A559 (2005)
50. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard and M. Tournoux, “Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2−yO4 (0 ≤ y ≤ 1)”, Solid State Ionics 81, 3-4, 167-170 (1995)
51. Y. Gao, K. Myrtle, M. Zhang, J. N. Reimers and J. R. Dahn, “Valence band of LiNixMn2-xO4 and its effects the voltage profiles of LiNixMn2-xO4/Li electrochemical cells“, Phys. Rev. B 54, 23 16670 (1996)
52. Y. E. Eli, S. H. Lu, M. A. Rzeznik, S. Mukerjee, X. Q. Yong and J. McBeen, “LiCuxMn2-xO4 spinels (0.1< x < 0.5): A new class of cathode material for Li batteries”, J. Electrochem.Soc. 145,10, 3383-3386 (1998)
53. H. Shigemura, H. Sakaebe, H. Kageyama, H. Kobayashi, and M. Tabuchi, “Structure and electrochemical properties of LiFexMn2-xO4 (0 < x < 0.5) spinel as 5 V electrode material for lithium batteries”, J. Electrochem. Soc. 148, 7, A730-A736 (2001)
54. H. Kawai, M. Nagata, H. Tukamoto, and A. R. West, “A new lithium cathode LiCoMnO4: Toward practical 5 V lithium batteries”, Electrochem. Solid St. 1, 5, 212-214 (1998)
55. Y. K. Yoon, C. W. Park, H. Y. Ahn, D. H. Kim, Y. S. Lee, and J. Kim “Synthesis and characterization of spinel type high-power cathode materials LiMxMn2-xO4 (M= Ni, Co, Cr)”, J. Phys. Chem. Solids 68, 5-6, 780-784 (2007)
56. B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H. J. Kim, and S. Choi, “Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries”, Electrochem. Commun. 6, 8, 821-826 (2004)
57. B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H. J. Kim, and S. Choi, “The study of LiNi0.5Mn1.5O4 5 V cathodes for Li-ion batteries”, J. Power Sources 146, 664-669 (2005)
58. H. M. Wu, J. P. Tu, X. T. Chen, D. Q. Shi, X. B. Zhao, and G. S. Cao, “Synthesis and characterization of abundant Ni-doped LiNixMn2−xO4 (x= 0.1–0.5) powders by spray-drying method”, Electrochimica Acta 51, 4148–4152 (2006)
59. L. Wen, Q. Lu and G. X. Xu, “Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials”, Electrochimica Acta 51, 4388–4392 (2006)
60. H. Fang, Z. Wang, B. Zhang, X Li, and G. Li, “LiNi0.5Mn1.5O4 cathode materials synthesized by a combinational annealing method”, Electrochem. Commun. 9, 1077–1082 (2007)
61. H. Fang, Z. Wang, X. Li, H. Guo, and W. Peng, “Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction”, J. Power Sources 153, 174–176 (2006)
62. M. Kunduraci, J. F. Al-Sharab, and G. G. Amatucci, “High-Power Nanostructured LiMn2-xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials: Electrochemical”, Chem. Mater. 18, 3585-3592 (2006)
63. B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H. J. Kim, and S. Choi, ”Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O¬4 and carbon electrodes for lithium-ion 5-V cells”, J. Power. Sources 162 , 780-789 (2006)
64. Q. M. Zhong, A. Bonakdarpour, M. J. Zhang, and J. R. Dahn,”Synthesis and Electrochemistry of LiNixMn2-xO4”, Electrochem. Soc. 144, 1, 205-213 (1997)
65. Y. J. Wei, L. Y. Yan, C. Z. Wang, X. G. Xu, F. Wu, and G. Chen “Effects of Ni Doping on [MnO6 ] Octahedron in LiMn2O4”, J. Phys. Chem. B 108, 18547–18551 (2004)
66. J. Shu, T. F. Yi, M. Shui, Y. Wang, R. S. Zhu, X. F. Chu, F. Huang, D. Xu, and L. Hou, ” Comparison of electronic property and structural stability of LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials for lithium-ion batteries”, Comp. Mater. Sci. 50, 776–779 (2010)
67. H. Y. Xu, S. Xie, N. Ding, B. L. Liu, Y. Shang, and C. H. Chen, “Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel prepared by radiated polymer gel method”, Electrochimica Acta 51, 21, 4352-4357 (2006)
68. S. Akao, M. Yamada, T. Kodera, K. Myoujin, and T. Ogihara, “Powder Characterization and Electrochemical Properties of LiNi0.5Mn1.5O4 Cathode Materials Produced by Large Spray Pyrolysis Using Flame Combustion”, Advances in Materials Science and Engineering, Article ID 768143 (2011)
69. Z. Chen, H. Zhu, S. Ji, V. Linkov, J. Zhang, and W. Zhu, “Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction”, J. Power. Sources 189, 507–510 (2009)
70. L. Wen, Q. Lu and G. X. Xu, “Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials”, Electrochimica Acta 51, 4388–4392 (2006)
71. X. Fang, N. Ding, X. Y. Feng, Y. Lu, and C. H. Chen, “Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance, diffusion coefficient and capacity loss mechanism”, Electrochimica Acta 54, 7471–7475 (2009)
72. Y. Fan, J. Wang, X. Ye, and J. Zhang, “Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method”, Mater. Chem. Phys. 103, 19–23 (2007)
73. J. C. Chen, W. C. Chen, Y. C. Tien, Shih, and C. Jen, “Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process”, J. Alloys Compd. 496, 1-2, 364-369, (2010)
74. Z. Chang, D. Dai, H. Tang, X. Yu, X. Z. Yuan, and H. Wang,” Effects of precursor treatment with reductant or oxidant on the structure and electrochemical properties of LiNi0.5Mn1.5O4”, Electrochimica Acta 55, 5506–5510 (2010)
75. J. Yu, Y. Zhang, and A. Kudo, “Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process”, J. Solid State Chem. 182, 2, 223-228 (2009)
76. C. Y. Lin, J.G. Duh, C. H. Hsu, and J. M. Chen, “LiNi0.5Mn1.5O4 cathode material by low-temperature solid-state method with excellent cycleability in lithium ion battery”, Materials Letters 64, 2328–2330 (2010)
77. D. Liu, J. Han, and J. B. Goodenough, “Structure, morphology, and cathode performance of Li1−x[Ni0.5Mn1.5]O4 prepared by co-precipitation with oxalic acid”, J. Power Sources 195, 2918–2923 (2010)
78. C. Jiang, M. Ichihara, I. Honma, and H. Zhou, “Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode”, Electrochimica Acta 52, 6470–6475 (2007)
79. S. H. Choi, J. W. Son, Y. S. Yoon, and J. Kim, ” Particle size effects on temperature-dependent performance of LiCoO2 in lithium batteries”, J. Power Sources 158, 1419–1424 (2006)
80. T. Okumura, T. Fukutsuka, A. Yanagihara, Y.Orikasa, H.Arai, Z. Ogumi, and Y. Uchimoto, “Nanosized Effect on Electronic/Local Structures and Specific Lithium-Ion Insertion Property in TiO2 (B) Nanowires Analyzed by X-ray Absorption Spectroscopy”, Chem. Mater. 23, 3636 – 3644 (2011)
81. D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H. J. Kim, and D. Aurbach, “Electrochemical behavior of electrodes comprising micro- and nano-sized particles of LiNi0.5Mn1.5O4: A comparative study”, Electrochimica Acta 50, 5553-5560 (2005)
82. D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H. J. Kim, and D. Aurbach, “Comparing the Behavior of Nano- and Microsized Particles of LiMn1.5Ni0.5O4 Spinel as Cathode Materials for Li-Ion Batteries”, J. Electrochem. Soc. 154, A682-A691 (2007)
83. M. G. Lazarraga, L. Pascual, H. Gadjov, D. Kovacheva, K. Petrov, J. M. Amarilla, R. M. Rojas, M. A. Martin-Luengo, and J. M. Rojo, “Nanosize LiNiyMn2–yO4 (0<y<0.5) spinels synthesized by a sucrose-aided combustion method. Characterization and electrochemical performance”, J. Mater. Chem. 14, 1640-1647 (2004)
84. A. Caballero, M. Cruz, L. Hern´an, M. Melero, J. Morales, and E. R. Castell´on, “Nanocrystalline materials obtained by using a simple, rapid method for rechargeable lithium batteries”, J. Power Sources 150, 192–201 (2005)
85. M. Kunduraci and G. G. Amatucci, “Synthesis and Characterization of Nanostructured 4.7 V LixMn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries”, J. Electrochem. Soc. 153, A1345-A1352 (2006)
86. Y. S. Lee, Y. K. Sun, S. Ota, T. Miyashita, and M. Yoshio, “Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5 V cathode material by composite carbonate process”, Electrochem Commun. 4, 12, 989-994 (2002)
87. S. Ivanova, E. Zhecheva, R. Stoyanova, D. Nihtianova, S. Wegner, P. Tzvetkova, and S. Simova,” High-Voltage LiNi1/2Mn3/2O4 Spinel: Cationic Order and Particle Size Distribution”, J. Phys. Chem. C 115, 25170–25182 (2011)
88. N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, and C. M. Julien, “Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods”, J. Mag Mag. Mater. 309, 100–105 (2007)
89. S. H. Park, S. W. Oh, S. H. Kang, I. Belharouak, K. Amine, and Y. K. Sun, “Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4−δ cathodes with wide operation voltage (2.0–5.0 V)”, Electrochimica Acta 52, 7226–7230 (2007)
90. J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, and Y. K. Sun, “Comparative Study of LiNi0.5Mn1.5O4-ä and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3m and P4332”, Chem. Mater. 16, 906–914 (2004)
91. J. Xiao, X. Chen, P. V. Sushko, M. L. Sushko, L. Kovarik, J. Feng , Z. Deng , J. Zheng, G. L. Graff , Z. Nie, D. Choi, J. Liu, J. G. Zhang, and M. S. Whittingham, ”High-Performance LiNi0.5Mn1.5O4 Spinel Controlled by Mn3+ Concentration and Site Disorder”, WILEY-VCH, Weinheim Adv. Mater. (2012)
92. X. Y. Feng, C. Shen, X. Fang, and C. H. Chen, “Synthesis of LiNi0.5Mn1.5O4 by Solid-State Reaction with Improved Electrochemical Performance”, J. Alloys Compd. 509, 3623 (2011)
93. H. Xia, Y. S. Meng, L. Lu, and G. Ceder, “Electrochemical Properties of Nonstoichiometric LiNi0.5Mn1.5O4−Thin-Film Electrodes Prepared by Pulsed Laser Deposition”, J. Electrochem. Soc. 154, 8, A737-A743 (2007)
94. J. H. Kim, C. S. Yoon, S. T. Myung, J. Prakash, and Y. K. Sun, ”Phase Transitions in LiNi0.5Mn1.5O4 during Cycling at 5 V”, Electrochem. Solid St. 7, 7, A216-A220 (2004)
95. S. H. Park, S. W. Oh, C. S. Yoon, S. T. Myung, and Y. K. Sun, “LiNi0.5Mn1.5O4 Showing Reversible Phase Transition on 3 V Region”, Electrochem. Solid St. 8, 3, A163-A167 (2005)
96. Y. K. Sun, K. J. Hong, J. Prakash, and K. Amine, “Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures”, Electrochem. Commun. 4, 344–348 (2002)
97. H. M. Wu, I. Belharouak, A. Abouimrane, Y. K. Sun, and K. Amine, “Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries”, J. Power Sources 195, 2909–2913 (2010)
98. J. Liu and A. Manthiram, ” Kinetics Study of the 5 V Spinel Cathode LiMn1.5Ni0.5O4 Before and After Surface Modifications”, J. Electrochem. Soc. 156, 11, A833-A838 (2009)
99. Y. Fan, J. Wang, Z. Tang, W. He, and J. Zhang, “Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries”, Electrochimica Acta 52, 11, 3870-3875 (2007)
100. H. Fang, L. Li, and G. Li, “A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4”, J. Power Sources 167, 223–227 (2007)
101. A. K. Nikumbh, A. E. Athare, S. K. Pardeshi, “Thermal and electrical properties of manganese (II) oxalate dehydrate and cadmium (II) oxalate monohydrate”, Thermochimica Acta 326, 187–192 (1999)
102. Y. C. Chen, K. Xie, Y. Pan, C, Zheng, “Nano-sized LiMn2O4 spinel cathode materials exhibiting high rate discharge capability for lithium-ion batteries”, J. Power Sources 196, 6493–6497 (2011)
103. Q. Sun, X. H. Li, Z. X. Wang, and Y. Ji, “Synthesis and electrochemical performance of 5 V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction”, Trans. Nonferrous Met. Soc. China 19, 176−181 (2009)
104. Y. Idemoto, H. Narai, and N. Koura, “Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries”, J. Power Sources 119–121, 125–129 (2003)
105. D. Pasero, N. Reeves, V. Pralong, and A. R. West, “Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4−σ”, J. Electrochem. Soc. 155, 4, A282-A291 (2008)
106. A. Caballero, M. Cruz, L. Herna´n, M. Melero, J. Morales, and E. R. Castello´n, “Oxygen Deficiency as the Origin of the Disparate Behavior of LiM0.5Mn1.5O4 M=Ni, Cu Nanospinels in Lithium Cells” J. Electrochem. Soc. 152, 3, A552-A559 (2005)
107. B. L. Ellis, K. T. Lee, and L. F. Nazar, “Positive Electrode Materials for Li-Ion and Li-Batteries”, Chem. Mater. 22, 691–714 (2010)
108. G. Liu and I. Belharouak (Ed.), “LiNi0.5Mn1.5O4 Spinel and Its Derivatives as Cathodes for Li-Ion Batteries”, Lithium Ion Batteries - New Developments, InTech (2012)
109. http://abulafia.mt.ic.ac.uk/shannon/ptable.php
110. G. Singh, A. Si, and S. Ghosh “Structural, thermal and morphological studies of magnesium substituted-lithium manganese oxide spinels”, Physica B 404, 3807–3813 (2009)
111. C.M. Julien, F. Gendron, A. Amdouni, M. Massot, “Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels”, Mater. Sci. Eng. B 130, 41–48 (2006)
112. T. F. Yi and Y. R. Zhu “Synthesis and electrochemistry of 5 V LiNi0.4Mn1.6O4 cathode materials synthesized by different methods”, Electrochimica Acta 53, 3120–3126 (2008)
113. T. Y. Yang, K. Sun, Z.Y. Lei, N.Q. Zhang, and Y. Lang, “The influence of holding time on the performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery”, J. Alloys Compd. 502, 215–219 (2010)
114. M. M. Thackeray, Y. S. Horn, A. J. Kahaian, K. D. Kepler, E. Skinner, J. T. Vaughey, and S. A. Hackney, “Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/LixMn2O4Cells”, Electrochem. Solid St. 1, 1, 7-9 (1998)
115. K. Tateishi and D. du Boulay, “The effect of mixed Mn valences on Li migration in LiMn2O4 spinel: A molecular dynamics study”, Appl. Phys. Lett. 84, 4, 26 (2004)
116. R. Schmidt, A. Basu, and A. W. Brinkman, “Electron-hopping modes in NiMn2O4+d materials”, Appl. Phys. Lett. 86, 073501 (2005)
117. M. M. Shaijumon, E. Perre, B. Daffos, P. L. Taberna, J. Marie Tarascon, and P. Simon, “Nanoarchitectured 3D Cathodes for Li-Ion Microbatteries”, Adv. Mater. 22, 4978–4981 (2010)
118. http://pslc.ws/macrog/acrylate.htm
119. H. Wu, C. V. Rao, and B. Rambabu, “Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor”, Mater. Chem. Phys. 116, 532–535 (2009)