簡易檢索 / 詳目顯示

研究生: 曾仁志
Tseng, Jen-Chih
論文名稱: 利用Micro-Western Array平台和基因微陣列系統性探討CAPE對攝護腺癌轉移抑制之分子機制
Using Micro-Western Array and gene array to systematically analyze the molecular mechanisms of anti-metastasis effects of caffeic acid phenethyl ester on prostate cancer
指導教授: 楊孝德
Yang, Shiaw-Der
褚志斌
Chuu, Chih-Pin
口試委員: 汪宏達
Wang, Horng-Dar
江士昇
Jiang, Shih Sheng
張凱雄
Chang, Kai-Hsiung
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 107
中文關鍵詞: 咖啡酸苯乙脂高通量微西方墨點分析表皮-間質轉化攝護腺癌ROR2Wnt_signalingPI3K-Akt_signalingEGFR_signaling基因微陣列
外文關鍵詞: CAPE, Micro-Western_Array, EMT, Prostate_cancer, ROR2, Wnt_signaling, PI3K-Akt_signaling, EGFR_signaling, Gene_array
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 攝護腺癌是世界排名第5的常見癌症。超過80%的攝護腺癌症病患死於骨轉移。咖啡酸苯乙脂(caffeic acid phenethyl ester, CAPE)為蜂膠萃取物中主要具生物活性的一種成分。我們利用wound healing和transwell的實驗證明咖啡酸苯乙脂可以抑制PC-3和DU-145攝護腺癌細胞的移動與侵略性,並透過gelatin zymography證明咖啡酸苯乙脂可抑制MMP-9的活性。PC-3攝護腺癌細胞經咖啡酸苯乙脂處理後,利用gene array和RT-qPCR發現Wnt訊號傳遞中的抑制劑ROR2和KREMEN1的基因表現量上升,但HRAS, RAF1, PI3KR1, AKT1, AKT2, GSK3A和EGF的基因表現量則受到抑制。利用高通量西方點墨分析系統(high-throughput Micro-Western Array, MWA)分析結果發現經咖啡酸苯乙脂處理後,non-canonical Wnt的ROR2蛋白質表現上升,但-catenin、NF-B活性、PI3K-Akt和epithelial-mesenchymal transition (EMT)表現量則受到抑制。我們利用Wnt的TCF-LEF promoter接上冷光蛋白質基因來驗證經咖啡酸苯乙脂處理後會抑制攝護腺癌細胞的Wnt訊號傳遞。利用腹腔注射將咖啡酸苯乙脂分別給予經尾靜脈或後腿注射接種PC-3攝護腺癌細胞後的裸鼠身上,可以減少癌細胞的轉移與增生。免疫組織染色證明帶有PC-3癌細胞的裸鼠經過咖啡酸苯乙脂治療後,ROR2的蛋白質表現量上升,但Ki-67、Frizzled 4、NF-B p65、 MMP-9、 Snail、 β-catenin和磷酸化IκBα的蛋白質表現量則下降。臨床的證據指出,HRAS、RAF1、AKT2、GSK3A、EGF、nuclear β-catenin、NF-B p65、MMP9和snail在具轉移的前列腺癌細胞的表現量較高且預後較差,而KREMEN1、IκBα、MKP-3和BMP4的表現量則較低。根據我們臨床上以及細胞實驗分析結果,ROR2的表現量在攝護腺癌細胞中較低,特別是轉移的癌細胞。在DU-145和PC-3細胞中大量表現ROR2蛋白質明顯地提高E-cadherin表現量,但抑制vimentin、MMP-9,和細胞核內β-catenin的蛋白質量。利用transwell和wound healing assay證明在DU-145和PC-3攝護腺癌細胞中的過度表現ROR2蛋白質會抑制細胞的移動力。利用MWA分析發現在PC-3細胞中過度表現ROR2會導致PIAS3蛋白質量上升,但會抑制Stat3、NF-κB、phospho-Akt Ser473和Thr308。在PC-3攝護腺癌細胞中降低PIAS3表現量會增強細胞移動力和提高phospho-Akt Thr308及MMP-9的蛋白質量,但這些影響會因大量表現ROR2而被廢除。我們的研究結果推測ROR2很可能在攝護腺癌細胞中扮演一個腫瘤抑制蛋白質的角色,且咖啡酸苯乙脂調控的基因與蛋白質表現在臨床上對攝護腺癌細胞的轉移與預後是具有影響力的,我們推斷咖啡酸苯乙脂對癌症病人的治療是有幫助的。


    Prostate cancer (PCa) was the fifth most common cancer overall in the world. More than 80% of patients died from PCa developed bone metastases. Caffeic acid phenethyl ester (CAPE) is a main bioactive component of honeybee hive propolis. We demonstrated that CAPE treatment suppressed the migration and invasion of PC-3 and DU-145 prostate cancer (PCa) cells as well as MMP-9 activity as determined by wound healing, transwell, and gelatin zymography assays. CAPE treatment elevated gene abundances of Wnt signaling inhibitor receptor tyrosine kinase-like orphan receptor 2 (ROR2) and KREMEN1, but repressed gene abundances of HRAS, RAF1, PIK3R1, AKT1, AKT2, GSK3A and EGF in PC-3 PCa cells as determined by gene array Gene Set Enrichment Analysis (GSEA) analysis and qRT-PCR assay. Analysis using Micro-Western Array (MWA), a high-throughput antibody-based proteomics platform indicated that CAPE treatment induced ROR2 in non-canonical Wnt signaling pathway but suppressed abundance of -catenin, NF-B activity, PI3K-Akt signaling, and epithelial-mesenchymal transition (EMT). TCF-LEF promoter binding assay confirmed that CAPE treatment reduced canonical Wnt signaling. Intraperitoneal injection of CAPE reduced the metastasis and proliferation of PC-3 xenografts in tail vein and hind leg injection nude mice model, respectively. Immunohistochemical staining demonstrated that CAPE treatment increased abundance of ROR2 and Wnt5a but decreased protein expression of Ki67, Frizzle 4, NF-B p65, MMP9, Snail, β-catenin, and phosphorylation of IκBα. Clinical evidences revealed higher expression level of HRAS, RAF1, AKT2, GSK3A, EGF, nuclear β-catenin, NF-B p65, MMP9 and snail, as well as lower expression level of KREMEN1, IκBα, MKP-3, and BMP4 positive correlation with aggressive diseases and poor outcomes. Over-expression of ROR2 in DU-145 and PC-3 cells suppressed migration and invasion as determined with transwell and wound healing assay. Over-expression of ROR2 in DU-145 and PC-3 PCa cells significantly elevated E-cadherin, and suppressed vimentin, MMP-9, as well as nuclear β-catenin in protein level. MWA revealed that over-expression of ROR2 led to elevate protein level of PIAS3, but suppressed abundance of Stat3, NF-κB, phosphor-Akt Ser473 and Thr308 in PC-3 cells. Knockdown PIAS3 in PC-3 PCa cells enhanced cell migration and elevated phospho-Akt Thr308 and MMP-9, but these effects were abolished in ROR2 over-expressed PC-3 cells. Our study suggests that CAPE treatment might benefit prostate cancer patients with aberrant elevation of canonical Wnt and EGFR signaling and ROR2 is a novel tumor suppressor in PCa cells.

    Contents 致謝 ……………………………………………………………………………………………………………………………………………………………i Abstract …………………………………………………………………………………………………………………………………………………ii 中文摘要 …………………………………………………………………………………………………………………………………………………iv Contents ………………………………………………………………………………………………………………………………………………vi Chapter 1 Introduction ……………………………………………………………………………………………………………1 1.1 Prostate and prostate cancer …………………………………………………………………………………1 1.2 Cancer metastasis cascade ……………………………………………………………………………………………2 1.3 Signaling mechanisms of cancer progression ………………………………………………3 1.4 Caffeic acid phenethyl ester in cancer research ………………………………6 1.5 High throughput Micro-Western Array application ………………………………6 Chapter 2 Materials and Methods ……………………………………………………………………………………8 2.1 Chemicals ……………………………………………………………………………………………………………………………………8 2.2 Cell Culture ……………………………………………………………………………………………………………………………8 2.3 Plasmids and siRNAs ……………………………………………………………………………………………………………9 2.4 Transwell migration assay …………………………………………………………………………………………9 2.5 Transwell invasion assay …………………………………………………………………………………………10 2.6 Wound healing assay ………………………………………………………………………………………………………10 2.7 Gelatin Zymography assay …………………………………………………………………………………………11 2.8 Gene microarray analysis …………………………………………………………………………………………11 2.9 Quantitative real-time PCR ……………………………………………………………………………………12 2.10 Micro-Western Arrays (MWA) …………………………………………………………………………………14 2.11 Cell extract and subcellular fraction ……………………………………………………14 2.12 Western blotting analysis ……………………………………………………………………………………15 2.13 TCF-LEF reporter assay ……………………………………………………………………………………………16 2.14 Xenografts in athymic mice …………………………………………………………………………………16 2.15 Immunohistochemistry …………………………………………………………………………………………………17 2.16 Public domain data ………………………………………………………………………………………………………18 2.17 Data analysis ……………………………………………………………………………………………………………………20 Chapter 3 Results Part1: CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical wnt signaling …………………………………………………………………………………………………………………………………………………………………………21 3.1 CAPE treatment suppressed migration and invasion of PCa cells in vitro ………………………………………………………………………………………………………………………………………………21 3.2 CAPE treatment modulates the expression of genes associated with WNT, EGFR and RAS signaling pathway …………………………………………………………21 3.3 CAPE treatment altered the abundance and phosphorylation status of proteins involved in cell cycle regulation, PI3K-Akt signaling, NF-κB and Wnt signaling. ………………………………………………………………………22 3.4 CAPE treatment suppressed EMT through elevation of ROR2 and reduction of β-catenin dependent signaling ……………………………………………………24 3.5 CAPE treatment suppressed the local invasion and proliferation of PC-3 PCa cells in nude mice ……………………………………………………………………………………25 3.6 CAPE treatment suppressed metastasis of PC-3 PCa cells in nude mice …………………………………………………………………………………………………………………………………………………………26 3.7 Clinical significance of genes associated with metastasis was affected by CAPE treatment ………………………………………………………………………………………………26 3.8 Discussion: CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling …………27 Part 2: Activation of non-canonical Wnt Receptor ROR2 Signaling Suppresses Prostate Cancer Metastasis …………………………………………………………………32 3.9 Both mRNA and protein expression levels of ROR2 are down-regulated during human prostate cancer progression ………………………………33 3.10 Over-expression of ROR2 in PCa cells suppressed migration, invasion and EMT markers. …………………………………………………………………………………………………34 3.11 Over-expression of ROR2 affected expression level of Wnt5a, PIAS3, Stat3 and PI3K-Akt signaling. ……………………………………………………………………34 3.12 Over-expression of ROR2 suppressed cell migration via elevation of PIAS3. …………………………………………………………………………………………………………………35 3.13 Discussion: Activation of non-canonical Wnt Receptor ROR2 Signaling Suppresses Prostate Cancer Metastasis ………………………………………36 Chapter 5 Discussion and Conclusion ………………………………………………………………………38 Chapter 6 Figures and figure legends ……………………………………………………………………43 Table 1 Antibodies list ………………………………………………………………………………………………………73 Table 2 Profile of the Running ES Score and Positions of Geneset Members of WNT Signaling Pathway on the Rank Ordered List ……………81 Table 3 Profile of the Running ES Score and Positions of Geneset Members of Reactome Signaling By EGFR in Cancer on the Rank Ordered List ……………………………………………………………………………………………………………………………………82 Table 4 Profile of the Running ES Score and Positions of Geneset Members of Biocarta Ras pathway in Cancer on the Rank Ordered List …………………………………………………………………………………………………………………………………………………………………………85 Supplemental figures ………………………………………………………………………………………………………………86 Appendixes …………………………………………………………………………………………………………………………………………92 References …………………………………………………………………………………………………………………………………………97

    References
    1 Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA: a cancer journal for clinicians 62, 10-29, doi:10.3322/caac.20138 (2012).
    2 Lee, G. T. et al. Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction. Br J Cancer 110, 1634-1644, doi:10.1038/bjc.2014.23 (2014).
    3 Hall, C. L., Kang, S., MacDougald, O. A. & Keller, E. T. Role of Wnts in prostate cancer bone metastases. J Cell Biochem 97, 661-672, doi:10.1002/jcb.20735 (2006).
    4 Hall, C. L. & Keller, E. T. The role of Wnts in bone metastases. Cancer Metastasis Rev 25, 551-558, doi:10.1007/s10555-006-9022-2 (2006).
    5 Sylvia Julien Grille et al. The Protein Kinase Akt Induces Epithelial Mesenchymal Transition and Promotes Enhanced Motility and Invasiveness of Squamous Cell Carcinoma Lines. Cancer research 63(9), 2172-2178 (2003).
    6 Ledford, H. Cancer theory faces doubts. Nature 472, 273, doi:10.1038/472273a (2011).
    7 Jing, Y. Y., Han, Z. P., Zhang, S. S., Liu, Y. & Wei, L. X. Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci. 1, doi:10.1186/2045-3701-1-29 (2011).
    8 Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890, doi:10.1016/j.cell.2009.11.007 (2009).
    9 Gonzalez, D. M. & Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7, re8, doi:10.1126/scisignal.2005189 (2014).
    10 Voulgari, A. & Pintzas, A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et biophysica acta 1796, 75-90, doi:10.1016/j.bbcan.2009.03.002 (2009).
    11 Li, X. Q. et al. Nuclear beta-catenin accumulation is associated with increased expression of Nanog protein and predicts poor prognosis of non-small cell lung cancer. J. Transl. Med. 11, doi:10.1186/1479-5876-11-114 (2013).
    12 Wong, S. C. C., Lo, E. S. F., Lee, K. C., Chan, J. K. C. & Hsiao, W. L. W. Prognostic and diagnostic significance of beta-catenin nuclear immunostaining in colorectal cancer. Clinical cancer research 10, 1401-1408, doi:10.1158/1078-0432.ccr-0157-03 (2004).
    13 Gaujoux, S. et al. beta-catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 328-336, doi:10.1158/1078-0432.CCR-10-2006 (2011).
    14 Lessard, L. et al. NF-kappa B nuclear localization and its prognostic significance in prostate cancer. BJU international 91, 417-420, doi:10.1046/j.1464-4096.2003.04104.x (2003).
    15 Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature genetics 40, 499-507, doi:10.1038/ng.127 (2008).
    16 Li, X. et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Oncogene 27, 7118-7130, doi:10.1038/onc.2008.293 (2008).
    17 Mulholland, D. J. et al. Pten Loss and RAS/MAPK Activation Cooperate to Promote EMT and Metastasis Initiated from Prostate Cancer Stem/Progenitor Cells. Cancer research 72, 1878-1889, doi:10.1158/0008-5472.can-11-3132 (2012).
    18 McCall, P., Witton, C. J., Grimsley, S., Nielsen, K. V. & Edwards, J. Is PTEN loss associated with clinical outcome measures in human prostate cancer? British journal of cancer 99, 1296-1301, doi:10.1038/sj.bjc.6604680 (2008).
    19 Wise, H., Hermida, M. & Leslie, N. Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond). 131 (3), 197-210. (2017).
    20 Kim, M. J. et al. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America 99, 2884-2889, doi:10.1073/pnas.042688999 (2002).
    21 Kwabi-Addo, B. et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America 98, 11563-11568, doi:10.1073/pnas.201167798 (2001).
    22 Cariaga-Martinez, A. E. et al. Distinct and specific roles of AKT1 and AKT2 in androgen-sensitive and androgen-independent prostate cancer cells. Cellular signalling 25, 1586-1597, doi:10.1016/j.cellsig.2013.03.019 (2013).
    23 Larue, L. & Bellacosa, A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24, 7443-7454, doi:10.1038/sj.onc.1209091 (2005).
    24 Lin, H. P. et al. AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf & TSC1/TSC2. Oncotarget 6, 27097-27112, doi:10.18632/oncotarget.4553 (2015).
    25 Amit, S. et al. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes & development 16, 1066-1076, doi:10.1101/gad.230302 (2002).
    26 Liu, C. M. et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837-847, doi:10.1016/s0092-8674(02)00685-2 (2002).
    27 Morin PJ et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275(5307), 1787-1790. (1997).
    28 MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental cell 17, 9-26, doi:10.1016/j.devcel.2009.06.016 (2009).
    29 Wang, H. et al. Stabilization of Snail through AKT/GSK-3beta signaling pathway is required for TNF-alpha-induced epithelial-mesenchymal transition in prostate cancer PC3 cells. European journal of pharmacology 714, 48-55, doi:10.1016/j.ejphar.2013.05.046 (2013).
    30 Xu, C., Kim, N. G. & Gumbiner, B. M. Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 8, 4032-4039, doi:10.4161/cc.8.24.10111 (2009).
    31 Emami, K. H. & Corey, E. When prostate cancer meets bone: control by wnts. Cancer letters 253, 170-179, doi:10.1016/j.canlet.2006.12.040 (2007).
    32 Kaur, N. et al. Wnt3a mediated activation of Wnt/beta-catenin signaling promotes tumor progression in glioblastoma. Molecular and cellular neurosciences 54, 44-57, doi:10.1016/j.mcn.2013.01.001 (2013).
    33 Xiu-li Bao, H. S., Zhuo Chen, and Xin Tang. Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Molecular vision 18, 1983-1990 (2012).
    34 Chien, A. J., Conrad, W. H. & Moon, R. T. A Wnt survival guide: from flies to human disease. The Journal of investigative dermatology 129, 1614-1627, doi:10.1038/jid.2008.445 (2009).
    35 Bisson, I. & Prowse, D. M. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 19, 683-697, doi:10.1038/cr.2009.43 (2009).
    36 Andrzej Nowicki, Stanisław Sporny & Duda-Szymańska, J. β-catenin as a prognostic factor for prostate cancer (PCa). Central European journal of urology 65(3), 119-123 (2012).
    37 Gaujoux, S. et al. beta-Catenin Activation Is Associated with Specific Clinical and Pathologic Characteristics and a Poor Outcome in Adrenocortical Carcinoma. Clinical cancer research 17, 328-336, doi:10.1158/1078-0432.ccr-10-2006 (2011).
    38 Yang CC, Hsu CP & SD., Y. Antisense suppression of proline-directed protein kinase FA enhances chemosensitivity in human prostate cancer cells. Clin Cancer Res. 6(3), 1024-1030. (2000).
    39 Yang SD et al. Association of protein kinase FA/GSK-3alpha (a proline-directed kinase and a regulator of protooncogenes) with human cervical carcinoma dedifferentiation/progression. J Cell Biochem. 59(2), 143-150. (1995).
    40 Hsu, C. P., Hsueh, S. F., Yang, C. C. & Yang, S. D. Suppression of proline-directed protein kinase F-A expression inhibits the growth of human chronic myeloid leukaemia cells. British journal of cancer 82, 1480-1484 (2000).
    41 Hsu, Y. C., Fu, H. H., Jeng, Y. M., Lee, P. H. & Yang, S. D. Proline-directed protein kinase F-A is a powerful and independent prognostic predictor for progression and patient survival of hepatocellular carcinoma. Journal of Clinical Oncology 24, 3780-3788, doi:10.1200/jco.2005.03.7499 (2006).
    42 Yang, S. D. Proline-directed protein kinase F-A as a new signal-transducing target for lethal cancer treatment. Drug News Perspect. 18, 432-436, doi:10.1358/dnp.2005.18.7.939348 (2005).
    43 Yang, S. D. Proline-directed protein kinase F-A as a potential target for diagnosis and therapy of human cancers. Curr. Cancer Drug Targets 4, 591-596, doi:10.2174/1568009043332817 (2004).
    44 Natarajan, K., Singh, S., Burke, T. R., Jr., Grunberger, D. & Aggarwal, B. B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A 93, 9090-9095 (1996).
    45 Watabe, M., Hishikawa, K., Takayanagi, A., Shimizu, N. & Nakaki, T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. The Journal of biological chemistry 279, 6017-6026, doi:10.1074/jbc.M306040200 (2004).
    46 Wu, J. et al. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett 308, 43-53 (2011).
    47 Chen MF, W. C., Chen YJ, Keng PC, Chen WC. Cell killing and radiosensitization by caffeic acid phenethyl ester (CAPE) in lung cancer cells. J Radiat Res 45, 253-260 (2004).
    48 Lin HP, K. L. K., Chuu CP. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells. Phytother Res 26 (1), 122-126 (2012).
    49 Jin, U. H. et al. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells. Mol Cell Biochem 310, 43-48, doi:10.1007/s11010-007-9663-7 (2008).
    50 Hung MW, S. M. S., Tsai LC, Chang GG, Chang TC. Apoptotic effect of caffeic acid phenethyl ester and its ester and amide analogues in human cervical cancer ME180 cells. Anticancer Res 23 (6C), 4773-4780 (2003).
    51 Chuu, C. P. et al. Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev Res (Phila) 5, 788-797 (2012).
    52 Lin HP, J. S., Chuu CP. Caffeic Acid Phenethyl Ester Causes p21 Induction, Akt Signaling Reduction, and Growth Inhibition in PC-3 Human Prostate Cancer Cells. PloS one 7, e31286, doi:10.1371/journal.pone.0031286.g001 (2012).
    53 Lin, H. P. et al. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21(Cip1) and p27(Kip1). Oncotarget 6, 6684-6707 (2015).
    54 Ciaccio, M. F., Wagner, J. P., Chuu, C. P., Lauffenburger, D. A. & Jones, R. B. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nature Methods 7, 148-U195, doi:10.1038/nmeth.1418 (2010).
    55 Lin, C. Y. et al. Cholestane-3beta, 5alpha, 6beta-triol Suppresses Proliferation, Migration, and Invasion of Human Prostate Cancer Cells. PLoS One 8, e65734, doi:10.1371/journal.pone.0065734 (2013).
    56 Huo, C., Kao, Y. H. & Chuu, C. P. Androgen receptor inhibits epithelial-mesenchymal transition, migration, and invasion of PC-3 prostate cancer cells. Cancer Lett 369, 103-111, doi:10.1016/j.canlet.2015.08.001 (2015).
    57 Jiang, S. S. et al. Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. Clinical cancer research : an official journal of the American Association for Cancer Research 16, 4363-4373, doi:10.1158/1078-0432.CCR-10-0138 (2010).
    58 Lin HP, J. S. S., Chuu CP. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PloS one 7, e31286, doi:10.1371/journal.pone.0031286.g001 (2012).
    59 Holzbeierlein, J. et al. Gene Expression Analysis of Human Prostate Carcinoma during Hormonal Therapy Identifies Androgen-Responsive Genes and Mechanisms of Therapy Resistance. The American Journal of Pathology 164, 217-227, doi:10.1016/s0002-9440(10)63112-4 (2004).
    60 LaTulippe, E. et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer research 62, 4499-4506 (2002).
    61 Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239-243, doi:10.1038/nature11125 (2012).
    62 Chandran, U. R. et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC cancer 7, 64, doi:10.1186/1471-2407-7-64 (2007).
    63 Nakagawa, T. et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PloS one 3, e2318, doi:10.1371/journal.pone.0002318 (2008).
    64 Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America 98, 15149-15154, doi:10.1073/pnas.211566398 (2001).
    65 Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature genetics 33, 49-54, doi:10.1038/ng1060 (2003).
    66 Taylor, B. S. et al. Integrative Genomic Profiling of Human Prostate Cancer. Cancer cell 18, 11-22, doi:10.1016/j.ccr.2010.05.026 (2010).
    67 Yu, Y. P. et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. Journal of Clinical Oncology 22, 2790-2799, doi:10.1200/jco.2004.05.158 (2004).
    68 Varambally, S. et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer cell 8, 393-406, doi:10.1016/j.ccr.2005.10.001 (2005).
    69 Chandran, U. R. et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC cancer 7, doi:10.1186/1471-2407-7-64 (2007).
    70 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).
    71 Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. & Mesirov, J. P. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 23, 3251-3253, doi:10.1093/bioinformatics/btm369 (2007).
    72 Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420-1428, doi:10.1172/JCI39104 (2009).
    73 Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2, 442-454, doi:10.1038/nrc822 (2002).
    74 Chien, A. J., Conrad, W. H. & Moon, R. T. A Wnt Survival Guide: From Flies to Human Disease. J. Invest. Dermatol. 129, 1614-1627, doi:10.1038/jid.2008.445 (2009).
    75 Rabbani, S. A., Arakelian, A. & Farookhi, R. LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo. Cancer Med 2, 625-635, doi:10.1002/cam4.111 (2013).
    76 Lee, J. M., Dedhar, S., Kalluri, R. & Thompson, E. W. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172, 973-981, doi:10.1083/jcb.200601018 (2006).
    77 Gravdal, K., Halvorsen, O. J., Haukaas, S. A. & Akslen, L. A. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13, 7003-7011, doi:10.1158/1078-0432.CCR-07-1263 (2007).
    78 Umbas, R. et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res 52, 5104-5109 (1992).
    79 Richmond, P. J., Karayiannakis, A. J., Nagafuchi, A., Kaisary, A. V. & Pignatelli, M. Aberrant E-cadherin and alpha-catenin expression in prostate cancer: correlation with patient survival. Cancer Res 57, 3189-3193 (1997).
    80 Bryden, A. A. et al. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases. BJU Int 89, 400-403 (2002).
    81 Tomita, K. et al. Cadherin switching in human prostate cancer progression. Cancer Res 60, 3650-3654 (2000).
    82 Jennbacken, K. et al. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer 17, 469-479, doi:10.1677/ERC-10-0015 (2010).
    83 Martorana, A. M., Zheng, G., Crowe, T. C., O'Grady, R. L. & Lyons, J. G. Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Res 58, 4970-4979 (1998).
    84 Pratap, J. et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25, 8581-8591, doi:10.1128/MCB.25.19.8581-8591.2005 (2005).
    85 Tian, T. V. et al. Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene 33, 2204-2214, doi:10.1038/onc.2013.176 (2014).
    86 Uygur, B. & Wu, W. S. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Molecular cancer 10, 139, doi:10.1186/1476-4598-10-139 (2011).
    87 Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature cell biology 2, 84-89, doi:10.1038/35000034 (2000).
    88 Beach, S. et al. Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene 27, 2243-2248, doi:10.1038/sj.onc.1210860 (2008).
    89 Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature cell biology 2, 76-83, doi:10.1038/35000025 (2000).
    90 Wu, M. et al. Proteome analysis of human androgen-independent prostate cancer cell lines: variable metastatic potentials correlated with vimentin expression. Proteomics 7, 1973-1983, doi:10.1002/pmic.200600643 (2007).
    91 Benelli, R., Monteghirfo, S., Vene, R., Tosetti, F. & Ferrari, N. The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability. Mol Cancer 9, 142, doi:10.1186/1476-4598-9-142 (2010).
    92 Chen, G. et al. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101, 1345-1356, doi:10.1002/cncr.20518 (2004).
    93 Jung, S. J. et al. Clinical Significance of Wnt/beta-Catenin Signalling and Androgen Receptor Expression in Prostate Cancer. World J Mens Health 31, 36-46, doi:10.5534/wjmh.2013.31.1.36 (2013).
    94 Karin, M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18, 6867-6874, doi:10.1038/sj.onc.1203219 (1999).
    95 Mikels, A. J. & Nusse, R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4, e115, doi:10.1371/journal.pbio.0040115 (2006).
    96 van Bokhoven, H. et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nature genetics 25, 423-426 (2000).
    97 Schwabe, G. C. et al. Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am. J. Hum. Genet. 67, 822-831, doi:10.1086/303084 (2000).
    98 Afzal, A. R. & Jeffery, S. One gene, two phenotypes: ROR2 mutations in autosomal recessive Robinow syndrome and autosomal dominant brachydactyly type B. Hum. Mutat. 22, 1-11, doi:10.1002/humu.10233 (2003).
    99 Cerpa, W., Latorre-Esteves, E. & Barria, A. RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America 112, 4797-4802, doi:10.1073/pnas.1417053112 (2015).
    100 Skelton, R. J. P. et al. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells. Stem Cell Rep. 6, 95-108, doi:10.1016/j.stemcr.2015.11.006 (2016).
    101 Ford, C. E., Qian Ma, S. S., Quadir, A. & Ward, R. L. The dual role of the novel Wnt receptor tyrosine kinase, ROR2, in human carcinogenesis. Int J Cancer 133, 779-787, doi:10.1002/ijc.27984 (2013).
    102 Lara, E. et al. Epigenetic repression of ROR2 has a Wnt-mediated, pro-tumourigenic role in colon cancer. Molecular cancer 9, 170, doi:10.1186/1476-4598-9-170 (2010).
    103 Ma, S. S. et al. ROR2 is epigenetically inactivated in the early stages of colorectal neoplasia and is associated with proliferation and migration. BMC cancer 16, 508, doi:10.1186/s12885-016-2576-7 (2016).
    104 Li, L. et al. Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting beta-catenin and AKT signaling but frequently methylated in common carcinomas. Cellular and molecular life sciences : CMLS 71, 2179-2192, doi:10.1007/s00018-013-1485-z (2014).
    105 O'Connell, M. P. et al. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer discovery 3, 1378-1393, doi:10.1158/2159-8290.CD-13-0005 (2013).
    106 Lu, C. L. et al. Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget 6, 24912-24921, doi:10.18632/oncotarget.4701 (2015).
    107 Huang, J. F. et al. High ROR2 expression in tumor cells and stroma is correlated with poor prognosis in pancreatic ductal adenocarcinoma. Sci Rep 5, doi:10.1038/srep12991 (2015).
    108 Liu, Y. G., Bridges, R., Wortham, A. & Kulesz-Martin, M. NF-kappa B Repression by PIAS3 Mediated RelA SUMOylation. PloS one 7, doi:10.1371/journal.pone.0037636 (2012).
    109 Jang, H. D., Yoon, K., Shin, Y. J., Kim, J. & Lee, S. Y. PIAS3 suppresses NF-kappa B-mediated transcription by interacting with the p65/RelA subunit. J. Biol. Chem. 279, 24873-24880, doi:10.1074/jbc.M313018200 (2004).
    110 Chung, C. D. et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803-1805, doi:10.1126/science.278.5344.1803 (1997).
    111 Ogata, Y. et al. Overexpression of PIAS3 suppresses cell growth and restores the drug sensitivity of human lung cancer cells in association with PI3-K/Akt inactivation. Neoplasia 8, 817-825, doi:10.1593/neo.06409 (2006).
    112 Tseng, J. C. et al. CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling. Oncotarget 7, 38010-38024, doi:10.18632/oncotarget.9380 (2016).
    113 Hall, C. L., Bafico, A., Dai, J., Aaronson, S. A. & Keller, E. T. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 65, 7554-7560, doi:10.1158/0008-5472.CAN-05-1317 (2005).
    114 Schwaninger, R. et al. Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. Am J Pathol 170, 160-175, doi:10.2353/ajpath.2007.051276 (2007).
    115 Dai, J. et al. Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res 68, 5785-5794, doi:10.1158/0008-5472.CAN-07-6541 (2008).
    116 Yamamoto, H. et al. Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene 29, 2036-2046, doi:10.1038/onc.2009.496 (2010).
    117 Jin, F. et al. Regulation of prostate cancer cell migration toward bone marrow stromal cell-conditioned medium by Wnt5a signaling. Mol Med Rep 8, 1486-1492, doi:10.3892/mmr.2013.1698 (2013).
    118 Komiya, Y. & Habas, R. Wnt signal transduction pathways. Organogenesis 4, 68-75 (2008).
    119 Gordon, M. D. & Nusse, R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281, 22429-22433, doi:10.1074/jbc.R600015200 (2006).
    120 Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645-654 (2003).
    121 Hu, D. et al. c-Jun N-terminal kinase 1 interacts with and negatively regulates Wnt/beta-catenin signaling through GSK3beta pathway. Carcinogenesis 29, 2317-2324, doi:10.1093/carcin/bgn239 (2008).
    122 Hu Dong, B. X., Fang Wenfeng, Han Anjia,Yang Wancai. GSK3β Is Involved in JNK2-Mediated β-Catenin Inhibition. PloS one 4(8), e6640, doi:10.1371/journal.pone.0006640.g001
    10.1371/journal.pone.0006640.g002 (2009).
    123 Debebe, Z. & Rathmell, W. K. Ror2 as a Therapeutic Target in Cancer. Pharmacol. Ther. 150, 143-148, doi:10.1016/j.pharmthera.2015.01.010 (2015).
    124 Roarty, K., Shore, A. N., Creighton, C. J. & Rosen, J. M. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. The Journal of cell biology 208, 351-366, doi:10.1083/jcb.201408058 (2015).
    125 DeChiara, T. M. et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nature genetics 24, 271-274, doi:10.1038/73488 (2000).
    126 Cai, S. X. et al. The Orphan Receptor Tyrosine Kinase ROR2 Facilitates MSCs to Repair Lung Injury in ARDS Animal Model. Cell transplantation 25, 1561-1574, doi:10.3727/096368915X689776 (2016).
    127 Mundy, G. R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584-593, doi:10.1038/nrc867 (2002).
    128 Coleman, R. E. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 27, 165-176, doi:10.1053/ctrv.2001.0210 (2001).
    129 Weilbaecher, K. N., Guise, T. A. & McCauley, L. K. Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411-425, doi:10.1038/nrc3055 (2011).
    130 Day, K. C. et al. HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer research 77, 74-85, doi:10.1158/0008-5472.CAN-16-1656 (2017).
    131 Liu, C. C., Hsu, J. M., Kuo, L. K. & Chuu, C. P. Caffeic acid phenethyl ester as an adjuvant therapy for advanced prostate cancer. Medical hypotheses 80, 617-619, doi:10.1016/j.mehy.2013.02.003 (2013).
    132 Kudugunti, S. K., Vad, N. M., Ekogbo, E. & Moridani, M. Y. Efficacy of Caffeic Acid Phenethyl Ester (CAPE) in skin B16-F0 melanoma tumor bearing C57BL/6 mice. Invest. New Drugs 29, 52-62, doi:10.1007/s10637-009-9334-5 (2011).
    133 Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559-1564, doi:10.1126/science.1203543 (2011).

    QR CODE