研究生: |
周家福 Chou,ChiaFu |
---|---|
論文名稱: |
一個匿名Brusselator反應-擴散模型週期解路徑之探討 Numerical Investigation of Periodic Solution Paths of An Autonomous Brusselator Reaction-Diffusion Model |
指導教授: |
簡國清
Jen, K. C. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 割線預測法 、牛頓迭代法 、虛擬弧長延拓法 、隱函數定理 、打靶法 、局部延拓法 |
外文關鍵詞: | secant-predictor method, Newton’s method, the pseudo-arclength continuation method, implicit function theorem, shooting method, local continuation method |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是在探討一個匿名Brusselator反應-擴散模型週期解路徑。
首先我們先固定一個初始值然後再利用打靶法及牛頓迭代法找出週期。並使用局部延拓法﹑牛頓迭代法﹑隱函數定理﹑割線預測法及虛擬弧長延拓法等數值方法去延拓出週期解解路徑。
In this paper we will discuss periodic solution paths of an autonomous Brusselator reaction-diffusion model. First, we choose fixed variable then use shooting method and Newton’s interative method to compute period of the model. Also we use local continuation method, Newton’s interative method, implicit function theorem , secant-predictor method, and pseudo-arclength continuation method, to continue periodic solution paths.
[1] Allgower, E.L. and Chien, C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265-1281, (1986).
[2] Atkinson, K.E., The Numerical Solution of Bifurcation Problems, SIAM J. Numer. Anal., 14(4), pp.584-599, (1977).
[3] Brezzi,F., Rappaz,J. and Raviart,P.A., Finite Dimensional Approximation of a Bifurcation Problems, Numer. Math., 36,pp.1-25, (1980).
[4] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340,(1971).
[5] Crandall,M.G. and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal. 52, 161-180, (1973)
[6] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, pp.1-35, (1977).
[7] Crandall, M. G. and Rabinowitz, P.H. Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C.and Bessis, D., NATO Advanced Study Institute Series,(1979).
[8] Csaba Hös,Alan Champneys and László Kullmann Bifurcation Analysis of Surge and Rotating Stall in theMoore-Greitzer Compression System,IMA Journal of Applied Mathematics 68(2):205-228,(2003).
[9] Holodniok, M. & Kubícek, M. ``DERPER--an algorithm for the continuation of periodic solutions in ordinary differential equations," J. Comput. Phys. 55, 254-267,(1984).
[10] Jepson, A.D. and Spence, A.,Numerical Methods for Bifurcation Problems, State of the Art in Numerical Analysis, edit bu A. Iserles, MJD Powell,(1987).
[11] Keller, H. B. and Langford, W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems,Arch. Rational Mech.Anal.,48, 83-108(1972).
[12] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p.73, (1978).
[13] Keller, H. B. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz, P. H. Academic Press, pp.359-384, (1977).
[14] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems,TATA Institute of Fundamental Research , Springer-Verlag, (1987).
[15] Knedlík,P., Holodniok, M., Kubíček, M.and Marek, M. Periodic solutions in reaction-diffusion problems. International Congress CHISA, Prague, September(1984)
[16] Kubíček, M.and Marek, M., Computational Methods in Bifurcation
Theory and Dissipative Structyres, Springer-Verlag, New York,(1983).
[17] Kubíček, M., Linear systems with almost band matrix. Sci. papers of the Inst. of Chem. Technol. Prague, K12,5-9,(1977).
[18] Nicolis, G.,Prigogine, I.Self-organization in nonequilibrium systems (Wiley,New York),(1977).
[19] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, (1980).
[20] Wacker, H. (ed-), Continuation Methods, Academic Press, New York, (1978).
[21] W. T. Ang, The two-dimensional reaction-diffusion Brusselator system: a dual-reciprocity boundary element solution, Engineering Analysis with Boundary Elements 27 897-903,(2003).
[22] Yuncheng You, Global Dynamics of the Brusselator Equations. Dynamics of PDE, Vol.4, No.2, 167-196,( 2007).
[23] 張定華, 非線性常微分方程週期倍增分歧問題之數值探討, 新竹教育大學碩士論文,( 2005).
[24] 陳宏傑, Lorenz模型週期解路徑之分歧問題探討, 新竹教育大學碩士論文, (2007).
[25] 葉雅琪,一個雙核心Brusselator反應模型之倍增週期分歧問題探討,(2008).