研究生: |
林彥丞 Lin, Yan-Cheng |
---|---|
論文名稱: |
電漿處理奈米碳管-多巴胺/聚醯胺複合薄膜於正滲透系統之應用 Plasma Treated Carbon Nanotube-Dopamine/Polyamide Composite Film for Forward Osmosis Application |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
洪仁陽
Horng, Ren-Yang 林冠佑 Lin, Guan-You 李紫原 Lee, Chi-Young |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 正滲透 、電漿處理 、奈米碳管 、多巴胺 、聚醯胺 、複合薄膜 |
外文關鍵詞: | Forward osmosis, Plasma treatment, Carbon nanotubes, dopamin, polyamide, Thin-film composite membrane |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發出具有正滲透(Forward osmosis, FO)應用潛力的高通量碳複合薄膜,此薄膜包含以下三層結構:不織布基材、親水支撐層以及低交聯度選擇層。支撐層由經過電漿處理(Plasma treated)的奈米碳管(Carbon nanotubes, CNTs)所構成,刮塗於不織布形成親水pCNT支撐層;選擇層則是透過添加多巴胺(Dopamine, DA)於界面聚合法(Interfacial polymerization, IP)製備出的聚醯胺層(Polyamide, PA),命名為dPA。研究首先比較添加不同濃度DA於IP製程對製備出的PA層形貌、親水性、交聯程度以及FO效能影響;接著比較不同電漿處理功率以及時間對於CNT層形貌、吸水性以及缺陷程度的影響,並研究於其上以IP製程製備之PA層性質;最後結合以上兩種製程,探討製備的碳複合薄膜性質以及應用上的潛力。實驗結果顯示,添加DA於IP製程能夠調控PA層之交聯程度使FO效能提升;電漿處理後的CNT層能夠使親水性提升進而改善於其上合成之PA層性質。最後結合兩者製程所製備出之N-100p1CNT-dPA2薄膜在以1 M氯化鈉作為提取液、去離子水作為進流液的測試條件下,擁有水通量26.38 LMH,逆溶質通量8.54 gMH的表現,證明本研究製備之碳複合薄膜深具FO應用潛力。
This work proposes an innovative route to prepare a high performance carbon-based thin-film composite membrane for forward osmosis(FO)application, which consists of a nonwoven substrate, a hydrophilic supporting layer, and a low cross-linking degree selective layer. The supporting layer is composed of plasma treated carbon nanotubes(CNTs)and designated as pCNT, which is coated on polyethylene terephthalate nonwoven fabric by knife casting. Subsequently the polyamide(PA)selective layer is fabricated by the interfacial polymerization(IP)process with dopamine(DA)additive and is designated as dPA. Firstly, this study compares the effects of different DA additive in IP process. Secondly, effects of pCNT with different treating power and time are compared. Finally, this work combines dPA and pCNT to investigate their effect on FO performance. Results show that DA additive in IP process can control cross-linking degree of PA layer and improves FO performance. In addition, pCNT exhibits higher hydrophilicity compared to CNTs, and improves PA properties. Among all membranes, N-100p1CNT-dPA2 membrane fabricated by combining pCNT and dPA has the best FO performance with the water flux 26.38 LMH and reverse salt flux 8.54 gMH. The results show that the carbon-based composite membrane fabricated in this study has great potential in FO application.
[1] U. Water, 2018 UN World Water Development Report, Nature-based Solutions for Water. 2018.
[2] I. Wenten, Ultrafiltration in water treatment and its evaluation as pretreatment for reverse osmosis. Unpublished paper, Bandung Institute of Technology, Indonesia, 2008.
[3] M. Mulder and J. Mulder, Basic principles of membrane technology. 1996: Springer Science & Business Media.
[4] J. Vrentas and J. Duda, Diffusion in polymer—solvent systems. I. Reexamination of the free‐volume theory. Journal of Polymer Science: Polymer Physics Edition, 1977. 15(3): p. 403-416.
[5] J. G. Wijmans and R. W. Baker, The solution-diffusion model: a review. Journal of membrane science, 1995. 107(1-2): p. 1-21.
[6] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003. 63(15): p. 2223-2253.
[7] F. E. Ahmed, B. S. Lalia and R. Hashaikeh, A review on electrospinning for membrane fabrication: challenges and applications. Desalination, 2015. 356: p. 15-30.
[8] P. Goh and A. Ismail, A review on inorganic membranes for desalination and wastewater treatment. Desalination, 2018. 434: p. 60-80.
[9] S. Yadav, H. Saleem, I. Ibrar, O. Naji, A. A. Hawari, A. A. Alanezi, et al., Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination, 2020. 482: p. 114375.
[10] J. A. Idarraga-Mora, A. S. Childress, P. S. Friedel, D. A. Ladner, A. M. Rao and S. M. Husson, Role of nanocomposite support stiffness on TFC membrane water permeance. Membranes, 2018. 8(4): p. 111.
[11] J. E. Cadotte and R. J. Petersen, Thin-film composite reverse-osmosis membranes: origin, development, and recent advances. 1981, ACS Publications.
[12] R. E. Kesting, Synthetic polymeric membranes: a structural perspectives. 1985.
[13] H. Matsuyama, M. Teramoto, R. Nakatani and T. Maki, Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology. Journal of applied polymer science, 1999. 74(1): p. 171-178.
[14] T. Matsuura, Synthetic membranes and membrane separation processes. 2020: CRC press.
[15] C. Smolders, A. Reuvers, R. Boom and I. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. Journal of Membrane Science, 1992. 73(2-3): p. 259-275.
[16] C. Klaysom, T. Y. Cath, T. Depuydt and I. F. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical society reviews, 2013. 42(16): p. 6959-6989.
[17] S.-J. Park, W. Choi, S.-E. Nam, S. Hong, J. S. Lee and J.-H. Lee, Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization. Journal of Membrane Science, 2017. 526: p. 52-59.
[18] P. M. Johnson, J. Yoon, J. Y. Kelly, J. A. Howarter and C. M. Stafford, Molecular layer‐by‐layer deposition of highly crosslinked polyamide films. Journal of Polymer Science Part B: Polymer Physics, 2012. 50(3): p. 168-173.
[19] S.-B. Kwon, J. S. Lee, S. J. Kwon, S.-T. Yun, S. Lee and J.-H. Lee, Molecular layer-by-layer assembled forward osmosis membranes. Journal of membrane science, 2015. 488: p. 111-120.
[20] W. Jin, A. Toutianoush and B. Tieke, Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes. Langmuir, 2003. 19(7): p. 2550-2553.
[21] S. Zhao, L. Zou, C. Y. Tang and D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges. Journal of membrane science, 2012. 396: p. 1-21.
[22] R. Pattle, Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 1954. 174(4431): p. 660-660.
[23] V. Hervouet, HTI starts producing thin-film composite FO membrane. Membr. Technol, 2012. 7: p. 5-6.
[24] I. L. Alsvik and M.-B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods. Polymers, 2013. 5(1): p. 303-327.
[25] K. Lee, R. Baker and H. Lonsdale, Membranes for power generation by pressure-retarded osmosis. Journal of membrane science, 1981. 8(2): p. 141-171.
[26] S. Loeb, Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations. Journal of Membrane Science, 1976. 1: p. 49-63.
[27] E. M. Garcia-Castello, J. R. McCutcheon and M. Elimelech, Performance evaluation of sucrose concentration using forward osmosis. Journal of membrane science, 2009. 338(1-2): p. 61-66.
[28] E. M. Garcia-Castello and J. R. McCutcheon, Dewatering press liquor derived from orange production by forward osmosis. Journal of Membrane Science, 2011. 372(1-2): p. 97-101.
[29] A. Thombre, J. Cardinal, A. DeNoto and D. Gibbes, Asymmetric membrane capsules for osmotic drug delivery II. In vitro and in vivo drug release performance. Journal of controlled release, 1999. 57(1): p. 65-73.
[30] J. Li, D. Hou, K. Li, Y. Zhang, J. Wang and X. Zhang, Domestic wastewater treatment by forward osmosis-membrane distillation (FO-MD) integrated system. Water Science and Technology, 2018. 77(6): p. 1514-1523.
[31] M. M. Ling and T.-S. Chung, Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination, 2011. 278(1-3): p. 194-202.
[32] J. R. McCutcheon and M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of membrane science, 2006. 284(1-2): p. 237-247.
[33] N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman and M. Elimelech, High performance thin-film composite forward osmosis membrane. Environmental science & technology, 2010. 44(10): p. 3812-3818.
[34] J. S. Yong, W. A. Phillip and M. Elimelech, Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. Journal of Membrane Science, 2012. 392: p. 9-17.
[35] B. Mi and M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of membrane science, 2010. 348(1-2): p. 337-345.
[36] H. Guo, Z. Yao, J. Wang, Z. Yang, X. Ma and C. Y. Tang, Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. Journal of Membrane Science, 2018. 551: p. 234-242.
[37] X. Zhang, J. Tian, S. Gao, Z. Zhang, F. Cui and C. Y. Tang, In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly (arylene ether sulfone) for anti-fouling in emulsified oil/water separation. Journal of Membrane Science, 2017. 527: p. 26-34.
[38] S. Iijima, Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
[39] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, et al., Methods for carbon nanotubes synthesis. Journal of Materials Chemistry, 2011. 21(40): p. 15872-15884.
[40] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, et al., Measuring the thermal conductivity of a single carbon nanotube. Physical review letters, 2005. 95(6): p. 065502.
[41] M.-F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical review letters, 2000. 84(24): p. 5552.
[42] J. Che, P. Chen and M. B. Chan-Park, High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. Journal of Materials Chemistry A, 2013. 1(12): p. 4057-4066.
[43] Y. Wei, G. Eres, V. Merkulov and D. Lowndes, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Applied Physics Letters, 2001. 78(10): p. 1394-1396.
[44] O. Nerushev, S. Dittmar, R.-E. Morjan, F. Rohmund and E. Campbell, Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition. Journal of applied physics, 2003. 93(7): p. 4185-4190.
[45] M. Okai, T. Muneyoshi, T. Yaguchi and S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2000. 77(21): p. 3468-3470.
[46] L. Ci, Y. Li, B. Wei, J. Liang, C. Xu and D. Wu, Preparation of carbon nanofibers by the floating catalyst method. Carbon, 2000. 38(14): p. 1933-1937.
[47] M. Sianipar, S. H. Kim, F. Iskandar and I. G. Wenten, Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC advances, 2017. 7(81): p. 51175-51198.
[48] X. Song, L. Wang, L. Mao and Z. Wang, Nanocomposite membrane with different carbon nanotubes location for nanofiltration and forward osmosis applications. ACS Sustainable Chemistry & Engineering, 2016. 4(6): p. 2990-2997.
[49] M. Tian, Y.-N. Wang and R. Wang, Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination, 2015. 370: p. 79-86.
[50] F.-Y. Zhao, Y.-L. Ji, X.-D. Weng, Y.-F. Mi, C.-C. Ye, Q.-F. An, et al., High-flux positively charged nanocomposite nanofiltration membranes filled with poly (dopamine) modified multiwall carbon nanotubes. ACS applied materials & interfaces, 2016. 8(10): p. 6693-6700.
[51] B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas and L. G. Bachas, Aligned multiwalled carbon nanotube membranes. Science, 2004. 303(5654): p. 62-65.
[52] J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, et al., Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006. 312(5776): p. 1034-1037.
[53] 姜如芸, 聚多巴胺/氧化石墨烯複合膜應用於正向滲透之可行性研究. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2017.
[54] 簡明紳, 具蕾絲結構與底表面阻鹽層的聚丙烯腈複合膜在正滲透之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[55] 蔡孟庭, 奈米碳管-聚丙烯腈-分子級逐層堆疊聚醯胺選擇層複合膜於正向滲透之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[56] 林佶峰, 聚多巴胺/氧化石墨烯改良分子級逐層堆疊法於正滲透複合薄膜之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2018.
[57] 李欣樺, 高耐化學性碳複合薄膜於正滲透系統之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2019.
[58] 馬少陽, 聚丙烯腈/氧化石墨烯改良基材膜於正滲透複合膜之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2020.
[59] 黃瑋軒, 還原氧化石墨烯碳複合薄膜於正滲透系統之應用. 材料科學工程學系, 國立清華大學, 臺灣新竹, 2020.
[60] A. I. Nicolas-Silvente, E. Velasco-Ortega, I. Ortiz-Garcia, L. Monsalve-Guil, J. Gil and A. Jimenez-Guerra, Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials, 2020. 13(2): p. 314.
[61] T. Young, III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, 1805(95): p. 65-87.
[62] S. Azizian and M. Khosravi, Advanced oil spill decontamination techniques, in Interface Science and Technology. 2019, Elsevier. p. 283-332.
[63] 汪建民, 材料分析. 1998, 材料科學學會.
[64] J. Martín, E. J. Díaz-Montaña and A. G. Asuero, Recovery of anthocyanins using membrane technologies: A review. Critical reviews in analytical chemistry, 2018. 48(3): p. 143-175.
[65] L. Shen, S. Xiong and Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science, 2016. 143: p. 194-205.
[66] A. Tiraferri, N. Y. Yip, A. P. Straub, S. R.-V. Castrillon and M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. Journal of membrane science, 2013. 444: p. 523-538.
[67] L. Xu, J. Xu, B. Shan, X. Wang and C. Gao, Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination. Journal of Materials Chemistry A, 2017. 5(17): p. 7920-7932.
[68] Q.-Y. Wu, X.-Y. Xing, Y. Yu, L. Gu and Z.-K. Xu, Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis. Polymer, 2018. 153: p. 150-160.
[69] M. M. Said, A. H. M. El-Aassar, Y. H. Kotp, H. A. Shawky and M. S. A. Mottaleb, Performance assessment of prepared polyamide thin film composite membrane for desalination of saline groundwater at Mersa Alam-Ras Banas, Red Sea Coast, Egypt. Desalination and Water Treatment, 2013. 51(25-27): p. 4927-4937.
[70] M. N. Fini, J. Zhu, B. Van der Bruggen, H. T. Madsen and J. Muff, Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal. Journal of Membrane Science, 2020. 612: p. 118458.
[71] B. Khorshidi, T. Thundat, B. Fleck and M. Sadrzadeh, Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Advances, 2015. 5(68): p. 54985-54997.
[72] N. Ma, J. Wei, R. Liao and C. Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. Journal of Membrane Science, 2012. 405: p. 149-157.
[73] R. Scaffaro, A. Maio, S. Agnello and A. Glisenti, Plasma Functionalization of Multiwalled Carbon Nanotubes and Their Use in the Preparation of Nylon 6‐Based Nanohybrids. Plasma processes and polymers, 2012. 9(5): p. 503-512.
[74] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Raman spectrum of graphene and graphene layers. Physical review letters, 2006. 97(18): p. 187401.
[75] M. Dresselhaus, A. Jorio and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys., 2010. 1(1): p. 89-108.
[76] F. Yu, H. Shi, J. Shi, K. Teng, Z. Xu and X. Qian, High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer. Journal of Membrane Science, 2020. 616: p. 118611.
[77] N. Ma, J. Wei, S. Qi, Y. Zhao, Y. Gao and C. Y. Tang, Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. Journal of Membrane Science, 2013. 441: p. 54-62.
[78] X. Zhao, J. Li and C. Liu, A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance. Desalination, 2017. 413: p. 176-183.
[79] T. Y. Cath, M. Elimelech, J. R. McCutcheon, R. L. McGinnis, A. Achilli, D. Anastasio, et al., Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination, 2013. 312: p. 31-38.
[80] Y. Wang, Z. Fang, S. Zhao, D. Ng, J. Zhang and Z. Xie, Dopamine incorporating forward osmosis membranes with enhanced selectivity and antifouling properties. RSC advances, 2018. 8(40): p. 22469-22481.
[81] W. A. Phillip, J. S. Yong and M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments. Environmental science & technology, 2010. 44(13): p. 5170-5176.