簡易檢索 / 詳目顯示

研究生: 林廉鈞
Lien-Chung Lin
論文名稱: 使用磁振造影影像於腦腫瘤放射治療計畫系統中劑量計算之依據
Using MRI for Dose Calculation in Radiation Treatment Planning System of Brain Tumor
指導教授: 莊克士
Keh-Shih Chuang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 磁振造影腦腫瘤放射治療計畫劑量計算
外文關鍵詞: MRI, Brain Tumor, Radiation Treatment Planning(RTP), Dose Calculation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在評估以影像(MRI)為基礎之電腦治療計畫,其臨床上之可行性。許多學者指出,3D順行放射治療(3DCRT)及強度調控放射治療(IMRT)在一合理副作用的前提下,可大大提高腫瘤控制率;然而,當劑量相對增加時,對於腫瘤位置、大小及準確的劑量給予就顯得十分重要。我們知道,對於軟組織的對比及腫瘤的圈選,MRI可提供更多的資訊及影像品質相較於電腦斷層影像(CT);但是,由於MRI的像素灰階強度與組織電子密度無強烈關係存在,也就是影像中缺乏電子密度的資訊,所以無法應用於現今治療計畫中劑量之計算。為了解決這個問題,本研究首先使用模糊C-means分群法(FCM)將MRI分割成數個典型的組織,之後在指定各組織合理之CT值,將這張帶有CT值資訊的影像視為目標影像(Target image),再以非線性轉換方法中的人工類神經網路(ANNs),藉由反覆訓練,找出MRI與目標影像之最佳的映射關係,如此,便可透過網路將MRI轉換成HCT(Homemade CT)影像,而此HCT影像就是單由MRI影像轉換而成且帶有CT值資訊的影像。實驗結果顯示,在不同角度、能量及照野大小下,經由治療計畫運算,HCT影像與真正電腦斷層影像之劑量差異皆在2%以內,且與全部當做均質水的影像相比,HCT影像亦提供了更準確的劑量分佈;此外,HCT影像也可重建出模擬定位中之數位重建放射影像(DRR)。


    The purpose of this work is to evaluate the practicality of a treatment planning method based only on magnetic resonance imaging (MRI) for radiotherapy. Many investigators have demonstrated that dose escalation with three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) potentially increases the tumor control rate while keeping complication risk at a reasonable level. As dose levels are increased, the precise information of target location and size and the accuracy of dose delivery become crucial. Magnetic resonance imaging (MRI) provides superior image quality for soft-tissue delineation over computed tomography (CT) and is widely used for target and organ delineation in radiotherapy for treatment planning. The main drawback of this modality for treatment planning is the lack of electron density information in the MR images. In this study, we segment two sets MRI images of brain by FCM (fuzzy c-means clustering) method as a target image. To overcome the limitation of MRI in dose calculation, we assigned electron density values to typical anatomical structures. We use the non-linear convert method (Artificial Neural Networks) to transform MRI to Homemade CT (HCT) images. Our results show that the dose differences between HCT images and real CT images are within ±2% in different depths, photon energy, and field sizes. Compared with the homogeneous images, HCT-based treatment planning revealed the more accurate dose and dose distribution. In addition, HCT images can also provide DRR (digitally reconstructed radiograph) for radiography simulation.

    第一章 緒論 1 1.1 前言 1 1.2 現行CT為基礎之放射治療計畫系統 3 1.2.1 CT-based放射治療計畫之優點 4 1.2.2 CT-based放射治療計畫之限制與缺點 6 1.3 MRI為基礎之放射治療計畫系統 8 1.3.1 MRI放射治療計畫之優點 9 1.3.2 MRI放射治療計畫之限制與缺點 11 1.4 論文架構 13 第二章 材料與方法 14 2.1模糊C-means分群法 14 2.1.1 聚類分析 14 2.1.2 C-means分群法 14 2.1.3 模糊C-means分群法 17 2.1.4 模糊C-means分群法應用於MRI影像分割 19 2.2 指定CT值 24 2.2.1 CT值之定義 24 2.2.2 CT值與電子密度的關係 26 2.2.3 CT值在電腦治療計畫中的角色 27 2.2.4 指定CT值於組織 28 2.3類神經網路 29 2.3.1 何謂類神經網路 29 2.3.2 類神經網路如何運作 32 2.3.3 類神經網路的應用 35 2.3.4 倒傳遞神經網路 35 2.3.5 MRI影像轉換HCT影像 38 2.4實驗材料 45 第三章 結果與討論 46 3.1 HCT影像結果 46 3.2 HCT與均質影像之劑量比較 53 3.3 HCT與CT影像之劑量比較 65 3.4 HCT影像重建之DRRs 72 第四章 結論與未來方向 73 參考文獻 74

    參考文獻
    1.Chang J, Thakur S, Perera G, Kowalski A, Huang W, Karimi
    S, Hunt M, Koutcher J, Fuks Z, Amols H and Narayana A
    2006 Image-fusion of MR spectroscopic images for
    treatment planning of gliomas Med. Phys. 33 32-40
    2.Chen L, Price R A Jr, Wang L, Li J, Qin L, McNeeley S, Ma
    C M, Freedman G M and Pollack A 2004 MRI-based treatment
    planning for radiotherapy: dosimetric verification for
    prostate IMRT Int. J. Radiat. Oncol. Biol. Phys. 60 636-47
    3.Clarke L P, Velthuizen R P, Camacho M A, Heine J J,
    Vaidyanathan M, Hall L O, Thatcher R W and Silbiger M L
    1995 MRI segmentation: methods and applications Magn.
    Reson. Imaging. 13 343-68
    4.Emami B, Sethi A and Petruzzelli G J 2003 Influence of
    MRI on target volume delineation and IMRT planning in
    nasopharyngeal carcinoma Int. J. Radiat. Oncol. Biol.
    Phys. 57 481-8
    5.Galvin J M, Ezzell G, Eisbrauch A, Yu C, Butler B, Xiao
    Y, Rosen I, Rosenman J, Sharpe M, Xing L, Xia P, Lomax T,
    Low D A and Palta J 2004 Implementing IMRT in clinical
    practice: a joint document of the American Society for
    Therapeutic Radiology and Oncology and the American
    Association of Physicists in Medicine Int. J. Radiat.
    Oncol. Biol. Phys. 58 1616-34
    6.Guan H, Yin F F and Kim J H 2002 Accuracy of
    inhomogeneity correction in photon radiotherapy from CT
    scans with different settings Phys. Med. Biol. 47 N223-31
    Bezdek J C, Ehrlich R 1984 "FCM: The fuzzy c-means
    clustering algorithm Comp. Geosci. 10 22 191-203
    7.Kalender W A 2006 X-ray computed tomography Phys. Med.
    Biol. 51 R29-43
    8.Khoo V S, Dearnaley D P, Finnigan D J, Padhani A, Tanner
    S F, Leach M O 1997 Magnetic resonance imaging (MRI):
    considerations and applications in radiotherapy treatment
    planning Radiother. Oncol. 42 1-15
    9.Khoo V S 2000 MRI--"magic radiotherapy imaging" for
    treatment planning? Br. J. Radiol. 73 229-33
    10.Khoo V S and Joon D L 2006 New developments in MRI for
    target volume delineation in radiotherapy Br. J. Radiol.
    79 Spec No 1: S2-15.
    11.Mallard J R 2006 Magnetic resonance imaging-the Aberdeen
    perspective on developments in the early years Phys.
    Med. Bio.l 51 R45-60
    12.Tanner S F and Finnigan D Jet 2000 Radiotherapy planning
    of the pelvis using distortion corrected MR images: the
    removal of system distortions Phys. Med. Biol. 45 2117-32
    13.Thomas S J 1999 Relative electron density calibration of
    CT scanners for radiotherapy treatment Planning
    Br.J.Radiol. 72 781-6
    14.Vanderstraeten B and Chin P W 2007 Conversion of CT
    numbers into tissue parameters for Monte Carlo dose
    calculations: a multi-centre study Phys. Med. Biol. 52
    539-62
    15.Viswanathan A N, Dimopoulos J, Kirisits C, Berger D and
    Potter R 2007 Computed tomography versus magnetic
    resonance imaging-based contouring in cervical cancer
    brachytherapy: results of a prospective trial and
    preliminary guidelines for standardized contours Int. J.
    Radiat. Oncol. Biol. Phys. 68 491-8
    16.Wachter-Gerstner N, Wachter S, Reinstadler E, Fellner C,
    Knocke T H, Wambersie A and Potter R 2003 Bladder and
    rectum dose defined from MRI based treatment planning
    for cervix cancer brachytherapy: comparison of dose-
    volume histograms for organ contours and organ wall,
    comparison with ICRU rectum and bladder reference point
    Radiother. Oncol. 68 269-76
    17.ICRU 1993 Prescribing, recording, and reporting photon
    beam therapy International Commission of Radiation
    Units and Measurements.
    18.ICRU 1999 Prescribing, recording, and reporting photon
    beam therapy (supplement to ICRU Report 50). Bethesda,
    Maryland, International Commission of Radiation Units
    and Measurements.
    19.行政院衛生署統計資料. 20.http://www.doh.gov.tw/statistic/index.htm
    21.World Health Organization. http://www.who.int/en/
    莊克士 "醫學物理診斷學" 合記圖書 998

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE