研究生: |
盧佳暐 |
---|---|
論文名稱: |
利用直流電非平衡磁控濺鍍系統製備氮化鈦鋯薄膜結構與性質之研究:氮氣流量的效應 Characterization of Structure and Mechanical Properties of TiZrN Thin Films Deposited by DC Unbalanced Magnetron Sputtering: Effect of Nitrogen Flow Rate |
指導教授: |
喻冀平
黃嘉宏 |
口試委員: |
謝章興
李志偉 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 氮化鈦鋯 、氮氣流量 、直流電非平衡磁控濺鍍 |
外文關鍵詞: | TiZrN, nitrogen flow rate, DC unbalanced magnetron sputtering |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗是利用非平衡是磁控濺鍍法將奈米晶氮化鈦鋯 (TiZrN) 薄膜鍍著於 (100) 矽晶片上。研究目的是探討氮氣流量由0改變至2.5 sccm對氮化鈦鋯薄膜的結構、成分、性質的影響。實驗結果顯示氮氣流量最主要是影響在薄膜的相、織構、氮對鈦與鋯的比率 (N/(Ti+Zr) ratio)、膜厚、硬度、殘留應力以及電阻率。隨著氮氣流量增加,薄膜會有相的轉化,由TiZr和TiZrN混合相轉為單一的TiZrN相。由XRD的結果可以知道所有TiZrN試片的從優取向皆為 (111) 平面。薄膜氮對鈦與鋯的比率隨著氮流量增加而增加,但會逐漸趨緩。在氮流量由0.4改變至1.0sccm,TiZrN薄膜的硬度和殘留應力會隨著氮流量增加而增加,而TiZrN薄膜的電阻率則是隨著氮氣流量增加而降低。在氮流量大於1.0 sccm後,TiZrN薄膜為穩定單一相的結構,因此所有性質皆不再隨著氮流量增加而有所變化。在氮流量為1.0至2.5 sccm,TiZrN薄膜的硬度和電阻率平均值分別為36 GPa和36.5 µΩ-cm。
Nanocrystalline TiZrN thin films were deposited on Si (001) substrates by unbalanced magnetron sputtering. The objective of the study is to investigate the effect of nitrogen flow rate on the structure and properties of the TiZrN films with nitrogen flow ranging from 0 to 2.5 sccm. The major effects of the nitrogen flow rate were on the phase, texture, N/(Ti+Zr) ratio, thickness, hardness, residual stress, and resistivity of the TiZrN films. The nitrogen content plays an important role in the transition of phase. With the increase in nitrogen flow, the phase changed from TiZr and TiZrN mixing phases to single TiZrN phase. The results of XRD pattern indicated that (111) was the preferred orientation for all TiZrN specimens. The N/(Ti+Zr) ratio of the TiZrN films increased with respect to the nitrogen flow rate, and tended to stabilization as nitrogen flow rate further increased. When nitrogen flow rate increased from 0.4 to 1.0 sccm, the hardness and residual stress of TiZrN thin film increased, whereas the electrical resistivity decreased. All properties of the TiZrN thin films were not varied with nitrogen flow rate was over 1.0 sccm due to the fact that the films contained a stable single phase TiZrN. At high nitrogen flow rate of 1.0 to 2.5 sccm, the average hardness and resistivity of TiZrN thin films was about 36 GPa and 36.5 µΩ-cm, respectively.
[1] A.S. Korhonen, J.M. Molarius, I. Penttine, E. HARJU, "Hard Transition Metal Nitride Films Deposited by Triode Ion Plating", Mater. Sci. Eng., A 105-106 (1988) 497.
[2] L.P. Ward, K.N. Strafford, C. Subramanian, T.P. Wilks, "Observations on the structure, hardness and adhesion properties of a selection of multicomponent refractory element nitride coatings", Materials Processing Technology 56 (1996) 375.
[3] L.A. Donohue, J. Cawley, J.S. Brooks, "Deposition and characterisation of arc-bond sputter TiZrN coatings from pure metallic and semented targets", Surf. Coat. Technol. 72/1-2 (1995) 128.
[4] V.V. Uglov, V.M. Anishchik, V.V. Khodasevich, Z.L. Prikhodko, S.V. Zlotski, G. Abadias, S.N. Dub, "Structural characterization and mechanical properties of Ti–Zr–N coatings, deposited by vacuum arc", Surf. Coat. Technol. 180-181 (2004) 519.
[5] P.J. Kelly, R.D. Arnell, "Magnetron sputtering: a review of recent developments", Vacuum 56 (2000) 159.
[6] B. Window, "Recent advances in sputter deposition", Surf. Coat. Technol. 71 (1995) 93.
[7] JOSHUA PELLEG, L. Z. ZEVIN, S. LUNGO, "Reactive-sputter-deposited TiN films on glass substrates", Thin Solid Films 197 (1991) 117.
[8] JCPDS PDF#870633
[9] JCPDS PDF#893839
[10] H.A. Wriedt, J.L. Murray, "The N-Ti (Nitrogen-Titanium) System", Bulletin of Alloy Phase Diagrams 8 (1987) 4.
[11] H. Okamoto, "N-Zr (Nitrogen-Zirconium)", Phase Equilibria and Diffusion 27 (2006) 551.
[12] O. Knotek, M. Bohmer, T. Leyendecker, F. Jungblut, "The Structure and Composition of Ti-Zr-N, Ti-AI-Zr-N and Ti-AI-V-N Coatings", Mater. Sci. Eng., A 105/106 (1988) 481.
[13] Mayumi B, Takeyama, Takaomi Itoi, Eiji Aoyagi, A. Noya, "Diffusion barrier properties of nano-crystalline TiZrN films in Cu-Si contact systems", Appl. Surf. Sci. 216 (2003) 181.
[14] G. Abadias, L.E. Koutsokeras, S.N. Dub, G.N. Tolmachova, A. Debelle, T. Sauvage, P. Villechaise, "Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N", J. Vac. Sci. Technol., A: 28/4 (2010) 541.
[15] O. Knotek, A. Barimani, "On Spinodal decomposition in magnetron sputtered (Ti,Zr)nitride and carbide thin films", Thin Solid Films 174 (1989) 51.
[16] K.P. Purushotham, Liam P.Ward, Narelle Brack, Paul J. Pigram, Peter Evans, Hans Noorman, R.R. Manory, "Tribological studies of Zr-implanted PVD TiN coatings deposited on stainless steel substrates", Wear 254 (2003) 589.
[17] E. Lugscheider, O. Knotek, C. Barimani, T. Leyendecker, O. Lemmer, R. Wenke, "PVD hard coated reamers in lubricant-free cutting", Surf. Coat. Technol. 112 (1999) 146.
[18] E.W. Niu, L. Li, G.H. Lv, H. Chen, X.Z. Li, X.Z. Yang, S.Z. Yang, "Characterization of Ti-Zr-N films deposited by cathodic vacuum arc with different substrate bias", Appl. Surf. Sci. 254 (2008) 3909.
[19] Da-Yung Wang, Chi-Lung Chang, Cheng-Hsun Hsu, H.-N. Lin, "Synthesis of (Ti, Zr)N hard coatings by unbalanced magnetron sputtering", Surf. Coat. Technol. 130 (2000) 64.
[20] S. Chinsakolthanakorn, A. Buranawong, N. Witit-anun, S. Chaiyakun, P. Limsuwan, "Characterization of Nanostructured TiZrN Thin Films Deposited by Reactive DC Magnetron Co-sputtering", Procedia Engineering 32 (2012) 571.
[21] S. Cho, "Effect of nitrogen flow ratio on the structural and optical properties of aluminum nitride thin films", J. Cryst. Growth 326/1 (2011) 179.
[22] J.-H. Huang, K.-W. Lau, G.-P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surf. Coat. Technol. 191/1 (2005) 17.
[23] J.-E. Sundgren, B.-O. Johansson, S.-E. Karlsson, "Mechanisms of reactive sputtering of titanium nitride and titanium carbide I: influence of process parameters on film composition ", Thin Solid Films 105 (1983) 353.
[24] J.-H. Huang, C.-H. Ho, G.-P. Yu, "Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates", Mater. Chem. Phys. 102/1 (2007) 31.
[25] J. Musil, M. Hromadka, P. Novak, "Effect of nitrogen on tribological properties of amorphous carbon films alloyed with titanium", Surf. Coat. Technol. 205 (2011) S84.
[26] T. Zhou, P. Nie, X. Cai, P.K. Chu, "Influence of N2 partial pressure on mechanical properties of (Ti,Al)N films deposited by reactive magnetron sputtering", Vacuum 83/7 (2009) 1057.
[27] D.-C. Tsai, Y.-L. Huang, S.-R. Lin, D.-R. Jung, F.-S. Shieu, "Effect of nitrogen flow ratios on the microstructure and properties of (TiVCr)N coatings by reactive magnetic sputtering", Nucl. Instrum. Methods Phys. Res., Sect. B 269/7 (2011) 685.
[28] Y.-W. Lin, J.-H. Huang, G.-P. Yu, "Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering", Thin Solid Films 518/24 (2010) 7308.
[29] C.E. Wen, Y. Yamada, P.D. Hodgson, "Fabrication of novel TiZr alloy foams for biomedical applications", Mater. Sci. Eng., C 26/8 (2006) 1439.
[30] http://resource.npl.co.uk/mtdata/phdiagrams/tizr.htm.
[31] H. Habazaki, M. Uozumi, H. Konno, K. Shimizu, S. Nagata, K. Asami, K. Matsumoto, K. Takayama, Y. Oda, P. Skeldon, G.E. Thompson, "Influences of structure and composition on growth of anodic oxide films on Ti-Zr alloys", Electrochim. Acta 48/20-22 (2003) 3257.
[32] A.A. Voevodin, T.A. Fitz, J.J. Hu, J.S. Zabinski, "Nanocomposite tribological coatings with “chameleon” surface adaptation", J. Vac. Sci. Technol., A 20/4 (2002) 1434.
[33] Y.T. Pei, D. Galvan, J.T.M. De Hosson, A. Cavaleiro, "Nanostructured TiC/a-C coatings for low friction and wear resistant applications", Surf. Coat. Technol. 198/1-3 (2005) 44.
[34] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd 142.
[35] P. Scherrer, Gött. Nachr. 2 (1918) 98.
[36] L.V. Azaroff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill New York, 1958.
[37] D. Briggs, M.P. Seah, Practical Surface Analysis: Auger and X-ray photoelectron spectroscopy, John Wiley & Sons, 1990.
[38] http:/www.cem.msu.edu/~cem924sg/XPSASFs.html.
[39] H.-H.S. I. Milosev, M. Gaberscek, B. Navinsek, "Electrochemical Oxidation of Z rN Hard (PVD) Coatings Studied by XPS", Surf. Interface Anal. 24 (1996) 448.
[40] B.K. L. Wicikowski, L. Murawski, K. Szaniawska, and B. Susla, "AFM and XPS study of nitrided TiO2 and SiO2-TiO2 sol-gel derived films ", Vaccum 54 (1999) 221.
[41] R.G. M. Del Re, J.-P. Dauchot , P. Leclere , G. Terwagne , M. Hecq, "Study of ZrN layers deposited by reactive magnetron sputtering", Surf. Coat. Technol. 174-175 (2003) 240.
[42] S.M. Sze, VLSI Technology, AT&T Bell Laboratories, Murray Hill, New Jersey (1983) 184.
[43] W.C. Oliver, G.M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Mater. Res. Soc. 7 (1992) 1564.
[44] G.G. Stoney, "The tension of metallic films deposited by electrolysis", Proc. R. Soc. Lond. A 82 (1909) 172.
[45] W. Zhang, Y.L. Yao, I.C. Noyan, "Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation", J. Manuf. Sci. Eng . 126/1 (2004) 10.
[46] CIE, Tech. Rept., vol. Tech. Rept., Bureau Central de la CIE, 1971, p. 1.
[47] CIE, Tech. Rept., vol. Tech. Rept., Bureau Central de la CIE, 1978.
[48] ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia, PA, 1941.
[49] Y.-W. Lin, J.-H. Huang, G.-P. Yu, "Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate", J. Vac. Sci. Technol., A 28/4 (2010) 774.
[50] H. Ljungcrantz, M. Odén, L. Hultman, J.E. Greene, J.E. Sundgren, "Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO", J. Appl. Phys. 80/12 (1996) 6725.
[51] Wen-Jun Chou, Ge-Ping Yu, J.-H. Huang, "Deposition of TiN thin films on Si(100) by HCD ion plating", Surf. Coat. Technol. 140/3 (2001) 206.
[52] Q. Y. Chen, "Characterization of structure and mechanical properties of nano-crystalline TiZrN films deposited by unbalanced magnetron sputtering: the effect of Ti and Zr target current", Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2012.
[53] Chiapyng Lee, Y.-L. Kuo, "The Evolution of Diffusion Barriers in Copper Metallization", (2007).
[54] Y.-L. Kuo, F.-C. Kung, T.-L. Su, "Superior Stability of Ultrathin and Nanocrystalline TiZrN Films as Diffusion Barriers for Cu Metallization", Nanoscience and Nanotechnology Letters 1/1 (2009) 37.