簡易檢索 / 詳目顯示

研究生: 莊啟煌
Chuang, Chi-huang
論文名稱: 使用Ni薄膜和奈米顆粒催化劑提高Si陽極之電解水效能
Enhanced Water Splitting Performance of Si Photoanode using Ni Thin Film and Nanoparticle Catalyst
指導教授: 吳孟奇
Wu, Meng-Chyi
程育人
Cheng, Yuh-Jen
口試委員: 陳啟文
楊智超
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 57
中文關鍵詞: 電解水鎳薄膜快速熱退火
外文關鍵詞: Water Splitting, Ni film, Rapid Thermal Annealing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們利用快速熱退火(RTA)方法將鎳薄膜聚集成奈米小球,利用原子力顯微鏡(AFM)觀察鎳薄膜經過各種快速熱退火後的各種表面形態,並使用光電化學系統產氫,使用循環安伏法量測光電特性,以觀查各種鎳薄膜經過快速熱退火後相對於鎳薄膜之光電特性
      我們得到50、70Å鎳薄膜經過500℃ RTA聚成奈米小球後,相比於50、70Å鎳薄膜、和經過其他溫度(650℃、800℃)快速熱退火後,照光電解下有更小的起始電位、更大的電流密度,效率更高的光電化學陽極。並且經過2小時照光電解下(電流密度大於15mA/cm2)再經過循環安伏法量測光電特性,發現光電流密度幾乎並未變動,代表此陽極具有良好的化學穩定性。


      This thesis reports the study of using Ni nanoparticle to enhance photoelectrochemical water splitting performance. Rapid Thermal Annealing (RTA) method is used to aggregate nickel thin film into Ni nanoparticles. The effect of different RTA conditions to Ni nanoparticle formation is investigated using Atomic Force Microscopy (AFM). Cyclic voltammetry method is used to measure the photoelectric water splitting performance of various nickel nanoparticle samples and compare it to nickel thin film coated samples.
     Ni nanoparticles fabricated from annealing 50 Å and 70 Å nickel film at 500 ℃,as compared to 50 Å and 70 Å nickel thin film and other annealing temperature (650 ℃,800 ℃),have smaller onset voltage, greater current density, and higher efficiency. Ni nanoparticle fabricated from 50 Å shows better performance than 70 Å sample. After 2 hours of water splitting (current density greater than 15mA/cm2) and through the cyclic voltammetry measurement, the Ni nanoparticle samples show excellent photocurrent and surface stability.

    第一章 緒論 1 1.1 簡介 1 1.2 PEC分解水產氫原理 3 1.3 歷史發展和文獻 7 1.4 循環伏特安培法原理 9 1.5 表面電位顯微鏡的原理 11 第二章 研究方法與步驟. 12 2.1 實驗參考文獻與動機 12 2.2 實驗設備與樣品 13 2.3 實驗流程 16 第三章 實驗結果與分析… 20 3.1 RTA後Ni表面型態 20 3.2 Ni Film RTA後與Ni File電解水結果比較 33 3.3 長時間電解後之AFM圖 42 3.4 Ni Stripe分析 44 第四章 結論與建議 52 4.1 結論 52 4.2 建議 54 第五章 參考文獻 55

    [1]John A. Turner,Science,Vol. 305,972-974(2004)
    [2]J.D.Holladay,J.Hu,D.L.King,Y.Wang, Catalysis Today,Volume 139, Issue 4 244-260 (2009)
    [3] Kazuhiko Maeda, Kazunari Domen, J. Phys. Chem. Lett.1, 2655–2661(2010)
    [4] Akira Fujishima ,Tata N. Rao, Donald A. Tryk, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1 (2000) 1–21
    [5] T. Bak, J. Nowotny , M. Rekas, C.C. Sorrell, International Journal of Hydrogen Energy 27 ,
    991–1022 (2002)
    [6] AKIRA FUJISHIMA, KENICHI HONDA,Nature 238,
    37–38 (1972)
    [7] H. Gerischer, Faraday Discuss. Chem. Soc. 70,
    137–151 (1980).
    [8] Y. W. Chen et al., Nat. Mater. 10, 539 – 544 (2011)
    [9] N. C. Strandwitz et al., J. Phys. Chem. C 117 ,
    4931–4936 (2013)
    [10] Ke Sun , Fadl H. Saadi et al. PNAS, vol.112,
    3612–3617(2015)
    [11] Ke Sun, Matthew T. McDowell et al.,J. Phys. Chem. Lett.6,592-598 (2015)
    [12] Ke Sun, Namseok Park et al.,Energy Environ,Sci.5,
    7872-7877 (2012)
    [13] Suljo Linic, Phillip Christopher , David B.Ingram
    ,Nature Materials 10, 911–921 (2011)
    [14] Gary A. Mabbott ,J. Chem. Educ.vol.60,issue9,697(1983)
    [15]黃乾庭,國立交通大學碩士論文(2006)
    [16] Michael J. Kenney et al.,Science Vol 342,836-840(2013)
    [17] F. M. d’Heurle, C. S. Petersson, M. Y. Tsai, J. Appl. Phys., Vol. 53,8765-8770 (1982)
    [18] S. Abhaya, G. Amarendra, S. Kalavathi et al.,Applied Surface Science,Volume 253, Issue 8,3799-3802 (2007)
    [19] JIN JANG ,SOO YOUNG YOON,International Journal of High Speed Electronics and Systems,Volume 10, Issue 01,(2000)
    [20]程立偉 ,國立清華大學博士論文(2000)
    [21] Donald Tuomi,J. Electrochem. Soc.,volume 112, issue 1,1-12 (1965)
    [22] P. Oliva et al., J. Power Sources Volume 8, Issue 2, 229–255 (1982)
    [23] Susanta K. Mohapatra,Mano Misra et al.,J. Phys. Chem. C, Vol.111, No. 24, 8677-8685 (2007)

    QR CODE